{"title":"知情和非知情设置下数字指纹编码的编码定理","authors":"H. Koga","doi":"10.1109/ITW48936.2021.9611451","DOIUrl":null,"url":null,"abstract":"Digital fingerprinting codes are used to protect copyrighted contents from unauthorized redistribution. In this paper we focus on a digital fingerprinting code that can identify both of two malicious users and investigate coding theorems. We give a new definition of an identifier of the malicious users which enables us to give an explicit formula of the joint capacity, the supremum achievable rate of the number of users. Two coding theorems are given under the two kinds of setups depending on the knowledge of an attack model of the malicious users.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coding Theorems on Digital Fingerprinting Coding under Informed and Uninformed Setups\",\"authors\":\"H. Koga\",\"doi\":\"10.1109/ITW48936.2021.9611451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital fingerprinting codes are used to protect copyrighted contents from unauthorized redistribution. In this paper we focus on a digital fingerprinting code that can identify both of two malicious users and investigate coding theorems. We give a new definition of an identifier of the malicious users which enables us to give an explicit formula of the joint capacity, the supremum achievable rate of the number of users. Two coding theorems are given under the two kinds of setups depending on the knowledge of an attack model of the malicious users.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coding Theorems on Digital Fingerprinting Coding under Informed and Uninformed Setups
Digital fingerprinting codes are used to protect copyrighted contents from unauthorized redistribution. In this paper we focus on a digital fingerprinting code that can identify both of two malicious users and investigate coding theorems. We give a new definition of an identifier of the malicious users which enables us to give an explicit formula of the joint capacity, the supremum achievable rate of the number of users. Two coding theorems are given under the two kinds of setups depending on the knowledge of an attack model of the malicious users.