移动边缘计算任务执行优化

Muhammad Fayyaz, Bin Cao, Waleed Almughalles, Yun Li, Liaqat Ali
{"title":"移动边缘计算任务执行优化","authors":"Muhammad Fayyaz, Bin Cao, Waleed Almughalles, Yun Li, Liaqat Ali","doi":"10.1145/3375998.3376034","DOIUrl":null,"url":null,"abstract":"Computation-intensive applications can be enabled by mobile edge computing (MEC) in 5G networks because MEC carries cloud computing almost near to smart devices. In this paper, we study a multi-user MEC system, where several smart devices (SDs) can fulfill computation offloading over wireless channels to a MEC server. we study the minimization of a total sum cost which is energy consumption and time delay for all the smart devices (where smart devices can choose one out of three scenarios to execute the task, i.e., full local computing scenario, full offloading execution scenario, and partial offloading execution scenario) as our objective function optimization. We mutually optimize task partition, offloading decision and computation resource sharing to reduce the total cost of the MEC system. We used an extensive search method and Lagrange method to solve these problems. Statistical results prove the effectiveness of our proposed scheme.","PeriodicalId":395773,"journal":{"name":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing Task Execution for Mobile Edge Computing\",\"authors\":\"Muhammad Fayyaz, Bin Cao, Waleed Almughalles, Yun Li, Liaqat Ali\",\"doi\":\"10.1145/3375998.3376034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation-intensive applications can be enabled by mobile edge computing (MEC) in 5G networks because MEC carries cloud computing almost near to smart devices. In this paper, we study a multi-user MEC system, where several smart devices (SDs) can fulfill computation offloading over wireless channels to a MEC server. we study the minimization of a total sum cost which is energy consumption and time delay for all the smart devices (where smart devices can choose one out of three scenarios to execute the task, i.e., full local computing scenario, full offloading execution scenario, and partial offloading execution scenario) as our objective function optimization. We mutually optimize task partition, offloading decision and computation resource sharing to reduce the total cost of the MEC system. We used an extensive search method and Lagrange method to solve these problems. Statistical results prove the effectiveness of our proposed scheme.\",\"PeriodicalId\":395773,\"journal\":{\"name\":\"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375998.3376034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375998.3376034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

5G网络中的移动边缘计算(MEC)可以实现计算密集型应用,因为MEC几乎可以在智能设备附近进行云计算。在本文中,我们研究了一个多用户MEC系统,其中多个智能设备(sd)可以通过无线信道完成计算卸载到MEC服务器。我们研究了所有智能设备的能耗和时延总成本的最小化(智能设备可以从三种场景中选择一种来执行任务,即完全本地计算场景、完全卸载执行场景和部分卸载执行场景)作为我们的目标函数优化。通过相互优化任务划分、卸载决策和计算资源共享来降低MEC系统的总成本。我们使用了广泛搜索法和拉格朗日法来解决这些问题。统计结果证明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Task Execution for Mobile Edge Computing
Computation-intensive applications can be enabled by mobile edge computing (MEC) in 5G networks because MEC carries cloud computing almost near to smart devices. In this paper, we study a multi-user MEC system, where several smart devices (SDs) can fulfill computation offloading over wireless channels to a MEC server. we study the minimization of a total sum cost which is energy consumption and time delay for all the smart devices (where smart devices can choose one out of three scenarios to execute the task, i.e., full local computing scenario, full offloading execution scenario, and partial offloading execution scenario) as our objective function optimization. We mutually optimize task partition, offloading decision and computation resource sharing to reduce the total cost of the MEC system. We used an extensive search method and Lagrange method to solve these problems. Statistical results prove the effectiveness of our proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信