动态图形游戏在线策略迭代解决方案

M. Abouheaf, M. Mahmoud
{"title":"动态图形游戏在线策略迭代解决方案","authors":"M. Abouheaf, M. Mahmoud","doi":"10.1109/SSD.2016.7473693","DOIUrl":null,"url":null,"abstract":"The dynamic graphical game is a special class of the standard dynamic game and explicitly captures the structure of a communication graph, where the information flow between the agents is governed by the communication graph topology. A novel online adaptive learning (policy iteration) solution for the graphical game is given in terms of the solution to a set of coupled graphical game Hamiltonian and Bellman equations. The policy iteration solution is developed to learn Nash solution for the dynamic graphical game online in real-time. Policy iteration convergence proof for the dynamic graphical game is given under mild condition about the graph interconnectivity properties. Critic neural network structures are used to implement the online policy iteration solution. Only partial knowledge of the dynamics is required and the tuning is done in a distributed fashion in terms of the local information available to each agent.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Online policy iteration solution for dynamic graphical games\",\"authors\":\"M. Abouheaf, M. Mahmoud\",\"doi\":\"10.1109/SSD.2016.7473693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic graphical game is a special class of the standard dynamic game and explicitly captures the structure of a communication graph, where the information flow between the agents is governed by the communication graph topology. A novel online adaptive learning (policy iteration) solution for the graphical game is given in terms of the solution to a set of coupled graphical game Hamiltonian and Bellman equations. The policy iteration solution is developed to learn Nash solution for the dynamic graphical game online in real-time. Policy iteration convergence proof for the dynamic graphical game is given under mild condition about the graph interconnectivity properties. Critic neural network structures are used to implement the online policy iteration solution. Only partial knowledge of the dynamics is required and the tuning is done in a distributed fashion in terms of the local information available to each agent.\",\"PeriodicalId\":149580,\"journal\":{\"name\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2016.7473693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

动态图形博弈是标准动态博弈的一个特殊类别,它显式地捕获通信图的结构,其中代理之间的信息流由通信图拓扑控制。通过求解一组耦合的图形博弈哈密顿方程和贝尔曼方程,给出了图形博弈的一种新的在线自适应学习(策略迭代)解。提出了在线动态图形游戏实时学习纳什解的策略迭代解。在温和条件下,给出了动态图形博弈的策略迭代收敛性证明。采用临界神经网络结构实现在线策略迭代方案。只需要了解动态的部分知识,并且根据每个代理可用的本地信息以分布式方式进行调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online policy iteration solution for dynamic graphical games
The dynamic graphical game is a special class of the standard dynamic game and explicitly captures the structure of a communication graph, where the information flow between the agents is governed by the communication graph topology. A novel online adaptive learning (policy iteration) solution for the graphical game is given in terms of the solution to a set of coupled graphical game Hamiltonian and Bellman equations. The policy iteration solution is developed to learn Nash solution for the dynamic graphical game online in real-time. Policy iteration convergence proof for the dynamic graphical game is given under mild condition about the graph interconnectivity properties. Critic neural network structures are used to implement the online policy iteration solution. Only partial knowledge of the dynamics is required and the tuning is done in a distributed fashion in terms of the local information available to each agent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信