时变系数向量值多元回归模型及其在股票超额收益预测中的应用

Y. Kawasaki, Seisho Sato, S. Tachiki
{"title":"时变系数向量值多元回归模型及其在股票超额收益预测中的应用","authors":"Y. Kawasaki, Seisho Sato, S. Tachiki","doi":"10.1109/CIFER.2000.844617","DOIUrl":null,"url":null,"abstract":"We consider a simple application of a Kalman filter to the OLS (cross-sectional regression) framework that produces almost the same result as the OLS estimates without smoothing. That is, simply introducing smoothness priors is not effective for obtaining smooth factor payoffs enough to be used in prediction. After showing that this comes from inadequate modeling of the covariance matrix R/sub t/, we introduce a GLS type specification. Secondly, even if an appropriate GLS type formulation for R/sub t/ is given, application of the Kalman filter sometimes encounters a huge computational burden, because, as is often the case, the number of stocks in a model (N, the dimension of observation vector) is much larger than that of explaining factors (K, the dimension of coefficient vector).","PeriodicalId":308591,"journal":{"name":"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vector-valued multiple regression model with time varying coefficients and its application to predict excess stock returns\",\"authors\":\"Y. Kawasaki, Seisho Sato, S. Tachiki\",\"doi\":\"10.1109/CIFER.2000.844617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a simple application of a Kalman filter to the OLS (cross-sectional regression) framework that produces almost the same result as the OLS estimates without smoothing. That is, simply introducing smoothness priors is not effective for obtaining smooth factor payoffs enough to be used in prediction. After showing that this comes from inadequate modeling of the covariance matrix R/sub t/, we introduce a GLS type specification. Secondly, even if an appropriate GLS type formulation for R/sub t/ is given, application of the Kalman filter sometimes encounters a huge computational burden, because, as is often the case, the number of stocks in a model (N, the dimension of observation vector) is much larger than that of explaining factors (K, the dimension of coefficient vector).\",\"PeriodicalId\":308591,\"journal\":{\"name\":\"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFER.2000.844617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.2000.844617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑将卡尔曼滤波器简单应用于OLS(横截面回归)框架,该框架产生与OLS估计几乎相同的结果,而无需平滑。也就是说,简单地引入平滑先验对于获得足够用于预测的平滑因子收益是无效的。在表明这是由于协方差矩阵R/下标t/建模不充分之后,我们引入了GLS类型规范。其次,即使给出了合适的R/ t/的GLS型公式,卡尔曼滤波器的应用有时也会遇到巨大的计算负担,因为通常情况下,模型中的股票数量(N,观测向量的维数)远大于解释因子的数量(K,系数向量的维数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector-valued multiple regression model with time varying coefficients and its application to predict excess stock returns
We consider a simple application of a Kalman filter to the OLS (cross-sectional regression) framework that produces almost the same result as the OLS estimates without smoothing. That is, simply introducing smoothness priors is not effective for obtaining smooth factor payoffs enough to be used in prediction. After showing that this comes from inadequate modeling of the covariance matrix R/sub t/, we introduce a GLS type specification. Secondly, even if an appropriate GLS type formulation for R/sub t/ is given, application of the Kalman filter sometimes encounters a huge computational burden, because, as is often the case, the number of stocks in a model (N, the dimension of observation vector) is much larger than that of explaining factors (K, the dimension of coefficient vector).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信