使用隐马尔可夫模型的阿萨姆在线手写数字识别系统

DAR '12 Pub Date : 2012-12-16 DOI:10.1145/2432553.2432573
G. S. Reddy, Bandita Sarma, R. Naik, S. Prasanna, C. Mahanta
{"title":"使用隐马尔可夫模型的阿萨姆在线手写数字识别系统","authors":"G. S. Reddy, Bandita Sarma, R. Naik, S. Prasanna, C. Mahanta","doi":"10.1145/2432553.2432573","DOIUrl":null,"url":null,"abstract":"This work describes the development of Assamese online handwritten digit recognition system. Assamese numerals are the same as the Bangla numerals. A large database of handwritten numerals is collected and partitioned into two parts of equal size. The first part is used for developing the Hidden Markov Models (HMM) based digit models. The (x, y) coordinates and their first and second time derivatives are used as features. The second part of the database is tested against the models to evaluate the performance. The digit recognition system provides an average recognition performance of 96.02%. A large amount of confusion is observed among the numerals 5 & 6. The new distance feature is used as an additional feature and the models are retrained. The performance for numeral 5 & 6 increases from 91.60% & 95.40% to 95.30% & 94.90%. As a result, the confusion reduces significantly and the average recognition performance increases to 97.14%.","PeriodicalId":410986,"journal":{"name":"DAR '12","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Assamese online handwritten digit recognition system using hidden Markov models\",\"authors\":\"G. S. Reddy, Bandita Sarma, R. Naik, S. Prasanna, C. Mahanta\",\"doi\":\"10.1145/2432553.2432573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the development of Assamese online handwritten digit recognition system. Assamese numerals are the same as the Bangla numerals. A large database of handwritten numerals is collected and partitioned into two parts of equal size. The first part is used for developing the Hidden Markov Models (HMM) based digit models. The (x, y) coordinates and their first and second time derivatives are used as features. The second part of the database is tested against the models to evaluate the performance. The digit recognition system provides an average recognition performance of 96.02%. A large amount of confusion is observed among the numerals 5 & 6. The new distance feature is used as an additional feature and the models are retrained. The performance for numeral 5 & 6 increases from 91.60% & 95.40% to 95.30% & 94.90%. As a result, the confusion reduces significantly and the average recognition performance increases to 97.14%.\",\"PeriodicalId\":410986,\"journal\":{\"name\":\"DAR '12\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAR '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2432553.2432573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAR '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2432553.2432573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本工作描述了阿萨姆邦在线手写数字识别系统的开发。阿萨姆语的数字与孟加拉语的数字相同。收集了一个手写数字的大型数据库,并将其分为大小相等的两个部分。第一部分用于开发基于隐马尔可夫模型(HMM)的数字模型。(x, y)坐标及其一阶和二阶导数用作特征。数据库的第二部分针对模型进行测试,以评估性能。该数字识别系统的平均识别率为96.02%。在数字5和6之间观察到大量的混淆。新的距离特征被用作附加特征,模型被重新训练。数字5和6的性能从91.60%和95.40%提高到95.30%和94.90%。结果,混淆明显减少,平均识别性能提高到97.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assamese online handwritten digit recognition system using hidden Markov models
This work describes the development of Assamese online handwritten digit recognition system. Assamese numerals are the same as the Bangla numerals. A large database of handwritten numerals is collected and partitioned into two parts of equal size. The first part is used for developing the Hidden Markov Models (HMM) based digit models. The (x, y) coordinates and their first and second time derivatives are used as features. The second part of the database is tested against the models to evaluate the performance. The digit recognition system provides an average recognition performance of 96.02%. A large amount of confusion is observed among the numerals 5 & 6. The new distance feature is used as an additional feature and the models are retrained. The performance for numeral 5 & 6 increases from 91.60% & 95.40% to 95.30% & 94.90%. As a result, the confusion reduces significantly and the average recognition performance increases to 97.14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信