(几乎)周期移动平均系统辨识的线性代数方法

Ying-Chang Liang, A. R. Leyman, Xianda Zhang
{"title":"(几乎)周期移动平均系统辨识的线性代数方法","authors":"Ying-Chang Liang, A. R. Leyman, Xianda Zhang","doi":"10.1109/HOST.1997.613498","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of (almost) periodic moving average (APMA) system identification. Two normal equations are established by using time varying higher order cumulants of the measurements, from which two new linear algebraic algorithms are presented for parameter estimation. Simulation examples are given to demonstrate the performance of these new approaches.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear algebraic approaches for (almost) periodic moving average system identification\",\"authors\":\"Ying-Chang Liang, A. R. Leyman, Xianda Zhang\",\"doi\":\"10.1109/HOST.1997.613498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of (almost) periodic moving average (APMA) system identification. Two normal equations are established by using time varying higher order cumulants of the measurements, from which two new linear algebraic algorithms are presented for parameter estimation. Simulation examples are given to demonstrate the performance of these new approaches.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究(几乎)周期移动平均(APMA)系统的辨识问题。利用测量值的时变高阶累积量建立了两个正态方程,并在此基础上提出了两种新的参数估计线性代数算法。仿真实例验证了这些新方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear algebraic approaches for (almost) periodic moving average system identification
This paper addresses the problem of (almost) periodic moving average (APMA) system identification. Two normal equations are established by using time varying higher order cumulants of the measurements, from which two new linear algebraic algorithms are presented for parameter estimation. Simulation examples are given to demonstrate the performance of these new approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信