一种基于kinect深度成像的y形迷宫行为测试自动跟踪系统

Zheyuan Wang, K. Murnane, Maysam Ghovanloo
{"title":"一种基于kinect深度成像的y形迷宫行为测试自动跟踪系统","authors":"Zheyuan Wang, K. Murnane, Maysam Ghovanloo","doi":"10.1109/BIOCAS.2017.8325222","DOIUrl":null,"url":null,"abstract":"This paper presents an image processing system for automated tracking and behavior analysis of the popular Y-maze test on freely behaving rats, using depth imaging provided by a Microsoft Kinect® 2D/3D imager. A contour-based segmentation algorithm was developed to identify the maze shape and extract its arm and center divisions. Using the extraction results, the system is capable of tracking the animal position and arm entry sequence for calculating spontaneous alternations and other measures that are used in analyzing the animal working memory and activity. The system was validated in vivo on seven freely behaving rats, and the results showed perfect agreement with human annotations, 100% accuracy in arm entry tracking and less than 0.1 s error in time stamps of “enter/leave” actions.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automated tracking system for Y-maze behavioral test using kinect depth imaging\",\"authors\":\"Zheyuan Wang, K. Murnane, Maysam Ghovanloo\",\"doi\":\"10.1109/BIOCAS.2017.8325222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an image processing system for automated tracking and behavior analysis of the popular Y-maze test on freely behaving rats, using depth imaging provided by a Microsoft Kinect® 2D/3D imager. A contour-based segmentation algorithm was developed to identify the maze shape and extract its arm and center divisions. Using the extraction results, the system is capable of tracking the animal position and arm entry sequence for calculating spontaneous alternations and other measures that are used in analyzing the animal working memory and activity. The system was validated in vivo on seven freely behaving rats, and the results showed perfect agreement with human annotations, 100% accuracy in arm entry tracking and less than 0.1 s error in time stamps of “enter/leave” actions.\",\"PeriodicalId\":361477,\"journal\":{\"name\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种图像处理系统,该系统使用微软Kinect®2D/3D成像仪提供的深度成像技术,用于对自由行为的大鼠进行流行的y迷宫测试的自动跟踪和行为分析。提出了一种基于轮廓的迷宫形状分割算法,对迷宫形状进行识别,提取迷宫的臂部分割和中心分割。利用提取结果,该系统能够跟踪动物的位置和手臂进入顺序,以计算自发变化和其他用于分析动物工作记忆和活动的措施。该系统在7只自由活动的大鼠身上进行了体内验证,结果与人类注释完全吻合,手臂进入跟踪准确率100%,“进入/离开”动作时间戳误差小于0.1 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automated tracking system for Y-maze behavioral test using kinect depth imaging
This paper presents an image processing system for automated tracking and behavior analysis of the popular Y-maze test on freely behaving rats, using depth imaging provided by a Microsoft Kinect® 2D/3D imager. A contour-based segmentation algorithm was developed to identify the maze shape and extract its arm and center divisions. Using the extraction results, the system is capable of tracking the animal position and arm entry sequence for calculating spontaneous alternations and other measures that are used in analyzing the animal working memory and activity. The system was validated in vivo on seven freely behaving rats, and the results showed perfect agreement with human annotations, 100% accuracy in arm entry tracking and less than 0.1 s error in time stamps of “enter/leave” actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信