WCD:一个新的中国在线社交媒体数据集,用于标题党分析和检测

Tong Liu, K. Yu, Lu Wang, Xuanyu Zhang, Xiaofei Wu
{"title":"WCD:一个新的中国在线社交媒体数据集,用于标题党分析和检测","authors":"Tong Liu, K. Yu, Lu Wang, Xuanyu Zhang, Xiaofei Wu","doi":"10.1109/IC-NIDC54101.2021.9660453","DOIUrl":null,"url":null,"abstract":"In online social medias, there is a large amount of clickbait using various tricks such as curious words and well-designed sentence structures, to attract users to click on hyperlinks for unknown benefits. Clickbait detection aims to detect these hyperlinks through automated algorithms. Most of the previous clickbait datasets are based on English online social media corpus. Detection models based on these datasets usually cannot be well generalized to Chinese social media scenarios. In this paper, we construct a WeChat based Chinese clickbait dataset, i.e., WCD. Based on the WCD, we conduct a detailed analysis of the clickbait features from three aspects: behavior features, headline text features, and content text features. Finally, we use popular methods for clickbait detection on our dataset. We also respectively propose a machine learning detection model using feature fusion and a deep learning detection model combining headline semantic and POS tag information, both of which achieve excellent detection performance. The results of clickbait analysis and detection show that the dataset we constructed is of high quality.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"WCD: A New Chinese Online Social Media Dataset for Clickbait Analysis and Detection\",\"authors\":\"Tong Liu, K. Yu, Lu Wang, Xuanyu Zhang, Xiaofei Wu\",\"doi\":\"10.1109/IC-NIDC54101.2021.9660453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In online social medias, there is a large amount of clickbait using various tricks such as curious words and well-designed sentence structures, to attract users to click on hyperlinks for unknown benefits. Clickbait detection aims to detect these hyperlinks through automated algorithms. Most of the previous clickbait datasets are based on English online social media corpus. Detection models based on these datasets usually cannot be well generalized to Chinese social media scenarios. In this paper, we construct a WeChat based Chinese clickbait dataset, i.e., WCD. Based on the WCD, we conduct a detailed analysis of the clickbait features from three aspects: behavior features, headline text features, and content text features. Finally, we use popular methods for clickbait detection on our dataset. We also respectively propose a machine learning detection model using feature fusion and a deep learning detection model combining headline semantic and POS tag information, both of which achieve excellent detection performance. The results of clickbait analysis and detection show that the dataset we constructed is of high quality.\",\"PeriodicalId\":264468,\"journal\":{\"name\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NIDC54101.2021.9660453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在网络社交媒体中,有大量的标题党使用各种各样的技巧,如奇怪的词语和精心设计的句子结构,吸引用户点击超链接,以获得未知的好处。标题党检测旨在通过自动算法检测这些超链接。之前的大多数标题党数据集都是基于英语在线社交媒体语料库的。基于这些数据集的检测模型通常不能很好地推广到中国的社交媒体场景。在本文中,我们构建了一个基于微信的中文标题党数据集,即WCD。基于WCD,我们从行为特征、标题文本特征和内容文本特征三个方面对标题党特征进行了详细的分析。最后,我们在我们的数据集上使用流行的方法来检测标题党。我们还分别提出了一种基于特征融合的机器学习检测模型和一种结合标题语义和POS标签信息的深度学习检测模型,两者都取得了优异的检测性能。标题党分析和检测的结果表明,我们构建的数据集是高质量的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WCD: A New Chinese Online Social Media Dataset for Clickbait Analysis and Detection
In online social medias, there is a large amount of clickbait using various tricks such as curious words and well-designed sentence structures, to attract users to click on hyperlinks for unknown benefits. Clickbait detection aims to detect these hyperlinks through automated algorithms. Most of the previous clickbait datasets are based on English online social media corpus. Detection models based on these datasets usually cannot be well generalized to Chinese social media scenarios. In this paper, we construct a WeChat based Chinese clickbait dataset, i.e., WCD. Based on the WCD, we conduct a detailed analysis of the clickbait features from three aspects: behavior features, headline text features, and content text features. Finally, we use popular methods for clickbait detection on our dataset. We also respectively propose a machine learning detection model using feature fusion and a deep learning detection model combining headline semantic and POS tag information, both of which achieve excellent detection performance. The results of clickbait analysis and detection show that the dataset we constructed is of high quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信