印度社交媒体语码混合数据与正式文本对比研究

Prakash Ranjan, B. Raja, R. Priyadharshini, R. Balabantaray
{"title":"印度社交媒体语码混合数据与正式文本对比研究","authors":"Prakash Ranjan, B. Raja, R. Priyadharshini, R. Balabantaray","doi":"10.1109/IC3I.2016.7918035","DOIUrl":null,"url":null,"abstract":"This paper presents comparative experiment results of code mixed data with the normal text. We first identify the Languages present in social media text, in the case of code mixed data existing language detector fails to detect language at the word level because of the use of roman script to write their own language. So we bootstrap language identification step and we caluculate the Code Mixe Index to show the amount of code mix in the corpora. We use the RNNLM to create a language model of code mixed data as well as pen tree bank data. We use the model to evaluate the similarity of code mixed data and open tree bank data. Using Perplexity measure we show that the code mixed data of Indian social media very less similarity to the normal data.","PeriodicalId":305971,"journal":{"name":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A comparative study on code-mixed data of Indian social media vs formal text\",\"authors\":\"Prakash Ranjan, B. Raja, R. Priyadharshini, R. Balabantaray\",\"doi\":\"10.1109/IC3I.2016.7918035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents comparative experiment results of code mixed data with the normal text. We first identify the Languages present in social media text, in the case of code mixed data existing language detector fails to detect language at the word level because of the use of roman script to write their own language. So we bootstrap language identification step and we caluculate the Code Mixe Index to show the amount of code mix in the corpora. We use the RNNLM to create a language model of code mixed data as well as pen tree bank data. We use the model to evaluate the similarity of code mixed data and open tree bank data. Using Perplexity measure we show that the code mixed data of Indian social media very less similarity to the normal data.\",\"PeriodicalId\":305971,\"journal\":{\"name\":\"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2016.7918035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2016.7918035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文给出了编码混合数据与正常文本的对比实验结果。我们首先识别社交媒体文本中存在的语言,在代码混合数据的情况下,现有的语言检测器无法在单词级别检测语言,因为使用罗马文字来编写自己的语言。因此,我们引导语言识别步骤,并计算代码混合索引来显示语料库中代码混合的数量。我们使用RNNLM来创建代码混合数据和笔树库数据的语言模型。利用该模型对代码混合数据和开放树库数据进行相似性评价。使用Perplexity度量,我们发现印度社交媒体的代码混合数据与正常数据的相似性非常低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study on code-mixed data of Indian social media vs formal text
This paper presents comparative experiment results of code mixed data with the normal text. We first identify the Languages present in social media text, in the case of code mixed data existing language detector fails to detect language at the word level because of the use of roman script to write their own language. So we bootstrap language identification step and we caluculate the Code Mixe Index to show the amount of code mix in the corpora. We use the RNNLM to create a language model of code mixed data as well as pen tree bank data. We use the model to evaluate the similarity of code mixed data and open tree bank data. Using Perplexity measure we show that the code mixed data of Indian social media very less similarity to the normal data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信