{"title":"基于状态反馈线性化技术的非正弦磁链分布永磁交流电机直接转矩控制","authors":"D. Grenier, S. Yala, O. Akhrif, L. Dessaint","doi":"10.1109/IECON.1998.722876","DOIUrl":null,"url":null,"abstract":"In this paper, the authors present a direct torque control scheme for a permanent-magnet (PM) AC motor. For this purpose, state feedback input-output linearization techniques are used with a systematic way of selecting outputs in such a way that not only the torque-voltage (or speed-voltage and position-voltage if necessary) relationship is linearized but a physical criterion is optimized (the minimization of copper losses for example). This strategy can be applied to various types of motors, such as brushless DC motors and PM stepper motors, and can also be seen as method to extend the Park's transformation. Simulations show the high performances of the proposed direct torque control scheme.","PeriodicalId":377136,"journal":{"name":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Direct torque control of PM AC motor with non-sinusoidal flux distribution using state-feedback linearization techniques\",\"authors\":\"D. Grenier, S. Yala, O. Akhrif, L. Dessaint\",\"doi\":\"10.1109/IECON.1998.722876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors present a direct torque control scheme for a permanent-magnet (PM) AC motor. For this purpose, state feedback input-output linearization techniques are used with a systematic way of selecting outputs in such a way that not only the torque-voltage (or speed-voltage and position-voltage if necessary) relationship is linearized but a physical criterion is optimized (the minimization of copper losses for example). This strategy can be applied to various types of motors, such as brushless DC motors and PM stepper motors, and can also be seen as method to extend the Park's transformation. Simulations show the high performances of the proposed direct torque control scheme.\",\"PeriodicalId\":377136,\"journal\":{\"name\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1998.722876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1998.722876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct torque control of PM AC motor with non-sinusoidal flux distribution using state-feedback linearization techniques
In this paper, the authors present a direct torque control scheme for a permanent-magnet (PM) AC motor. For this purpose, state feedback input-output linearization techniques are used with a systematic way of selecting outputs in such a way that not only the torque-voltage (or speed-voltage and position-voltage if necessary) relationship is linearized but a physical criterion is optimized (the minimization of copper losses for example). This strategy can be applied to various types of motors, such as brushless DC motors and PM stepper motors, and can also be seen as method to extend the Park's transformation. Simulations show the high performances of the proposed direct torque control scheme.