内在价值熵

L. Salce, Simone Virili
{"title":"内在价值熵","authors":"L. Salce, Simone Virili","doi":"10.1090/CONM/730/14717","DOIUrl":null,"url":null,"abstract":"We extend the notion of intrinsic entropy for endomorphisms of Abelian groups to endomorphisms of modules over an Archimedean non-discrete valuation domain $R$, using the natural non-discrete length function introduced by Northcott and Reufel for such a category of modules. We prove that this notion of entropy is a length function for the category of $R[X]$-modules, it satisfies (a suitably adapted version of) the Intrinsic Algebraic Yuzvinski Formula and that it is essentially the unique invariant for $Mod(R[X])$ with these properties.","PeriodicalId":318971,"journal":{"name":"Model Theory of Modules, Algebras and\n Categories","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Intrinsic valuation entropy\",\"authors\":\"L. Salce, Simone Virili\",\"doi\":\"10.1090/CONM/730/14717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the notion of intrinsic entropy for endomorphisms of Abelian groups to endomorphisms of modules over an Archimedean non-discrete valuation domain $R$, using the natural non-discrete length function introduced by Northcott and Reufel for such a category of modules. We prove that this notion of entropy is a length function for the category of $R[X]$-modules, it satisfies (a suitably adapted version of) the Intrinsic Algebraic Yuzvinski Formula and that it is essentially the unique invariant for $Mod(R[X])$ with these properties.\",\"PeriodicalId\":318971,\"journal\":{\"name\":\"Model Theory of Modules, Algebras and\\n Categories\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Theory of Modules, Algebras and\\n Categories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/730/14717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Theory of Modules, Algebras and\n Categories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/730/14717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用Northcott和Reufel为这一类模引入的自然非离散长度函数,将阿贝尔群自同态的本然熵的概念推广到阿基米德非离散估值域$R$上模的自同态。我们证明了这个熵的概念是$R[X]$-模范畴的一个长度函数,它满足(一个适当的修改版本)内禀代数Yuzvinski公式,并且它本质上是具有这些性质的$Mod(R[X])$的唯一不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrinsic valuation entropy
We extend the notion of intrinsic entropy for endomorphisms of Abelian groups to endomorphisms of modules over an Archimedean non-discrete valuation domain $R$, using the natural non-discrete length function introduced by Northcott and Reufel for such a category of modules. We prove that this notion of entropy is a length function for the category of $R[X]$-modules, it satisfies (a suitably adapted version of) the Intrinsic Algebraic Yuzvinski Formula and that it is essentially the unique invariant for $Mod(R[X])$ with these properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信