{"title":"内在价值熵","authors":"L. Salce, Simone Virili","doi":"10.1090/CONM/730/14717","DOIUrl":null,"url":null,"abstract":"We extend the notion of intrinsic entropy for endomorphisms of Abelian groups to endomorphisms of modules over an Archimedean non-discrete valuation domain $R$, using the natural non-discrete length function introduced by Northcott and Reufel for such a category of modules. We prove that this notion of entropy is a length function for the category of $R[X]$-modules, it satisfies (a suitably adapted version of) the Intrinsic Algebraic Yuzvinski Formula and that it is essentially the unique invariant for $Mod(R[X])$ with these properties.","PeriodicalId":318971,"journal":{"name":"Model Theory of Modules, Algebras and\n Categories","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Intrinsic valuation entropy\",\"authors\":\"L. Salce, Simone Virili\",\"doi\":\"10.1090/CONM/730/14717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the notion of intrinsic entropy for endomorphisms of Abelian groups to endomorphisms of modules over an Archimedean non-discrete valuation domain $R$, using the natural non-discrete length function introduced by Northcott and Reufel for such a category of modules. We prove that this notion of entropy is a length function for the category of $R[X]$-modules, it satisfies (a suitably adapted version of) the Intrinsic Algebraic Yuzvinski Formula and that it is essentially the unique invariant for $Mod(R[X])$ with these properties.\",\"PeriodicalId\":318971,\"journal\":{\"name\":\"Model Theory of Modules, Algebras and\\n Categories\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Theory of Modules, Algebras and\\n Categories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/730/14717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Theory of Modules, Algebras and\n Categories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/730/14717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We extend the notion of intrinsic entropy for endomorphisms of Abelian groups to endomorphisms of modules over an Archimedean non-discrete valuation domain $R$, using the natural non-discrete length function introduced by Northcott and Reufel for such a category of modules. We prove that this notion of entropy is a length function for the category of $R[X]$-modules, it satisfies (a suitably adapted version of) the Intrinsic Algebraic Yuzvinski Formula and that it is essentially the unique invariant for $Mod(R[X])$ with these properties.