基于多策略处理的藏汉机器翻译研究

Saihu Liu, Jie Zhu, Zhensong Li, Zhixiang Luo
{"title":"基于多策略处理的藏汉机器翻译研究","authors":"Saihu Liu, Jie Zhu, Zhensong Li, Zhixiang Luo","doi":"10.1109/PRML52754.2021.9520733","DOIUrl":null,"url":null,"abstract":"This article takes the low-resource nature of Tibetan-Chinese machine translation as the research object, acquires training data through a variety of strategies, and explores the problem of domain adaptability in Tibetan-Chinese materials and the problem of multi-granularity segmentation. Researched the Tibetan-Chinese machine translation method based on Transformer attention mechanism, studied the Tibetan-Chinese machine translation method with different segmentation granularity applied to both ends of encoder-decoder, evaluated multiple granular segmentation, corpus fusion of different fields and different types. The effect of corpus fusion is the experimental result with the highest BLEU score of 44.9 points.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Tibetan-Chinese Machine Translation Based on Multi-Strategy Processing\",\"authors\":\"Saihu Liu, Jie Zhu, Zhensong Li, Zhixiang Luo\",\"doi\":\"10.1109/PRML52754.2021.9520733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article takes the low-resource nature of Tibetan-Chinese machine translation as the research object, acquires training data through a variety of strategies, and explores the problem of domain adaptability in Tibetan-Chinese materials and the problem of multi-granularity segmentation. Researched the Tibetan-Chinese machine translation method based on Transformer attention mechanism, studied the Tibetan-Chinese machine translation method with different segmentation granularity applied to both ends of encoder-decoder, evaluated multiple granular segmentation, corpus fusion of different fields and different types. The effect of corpus fusion is the experimental result with the highest BLEU score of 44.9 points.\",\"PeriodicalId\":429603,\"journal\":{\"name\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRML52754.2021.9520733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以藏汉机器翻译的低资源特性为研究对象,通过多种策略获取训练数据,探索藏汉材料的领域自适应问题和多粒度分割问题。研究了基于Transformer注意机制的藏汉机器翻译方法,研究了不同分割粒度的藏汉机器翻译方法在编解码器两端的应用,评估了不同领域、不同类型的多粒度分割、语料库融合。体融合效果是BLEU评分最高的实验结果,达到44.9分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Tibetan-Chinese Machine Translation Based on Multi-Strategy Processing
This article takes the low-resource nature of Tibetan-Chinese machine translation as the research object, acquires training data through a variety of strategies, and explores the problem of domain adaptability in Tibetan-Chinese materials and the problem of multi-granularity segmentation. Researched the Tibetan-Chinese machine translation method based on Transformer attention mechanism, studied the Tibetan-Chinese machine translation method with different segmentation granularity applied to both ends of encoder-decoder, evaluated multiple granular segmentation, corpus fusion of different fields and different types. The effect of corpus fusion is the experimental result with the highest BLEU score of 44.9 points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信