基于系统调用序列互相关的入侵检测

Xiaoqiang Zhang, Zhongliang Zhu, P. Fan
{"title":"基于系统调用序列互相关的入侵检测","authors":"Xiaoqiang Zhang, Zhongliang Zhu, P. Fan","doi":"10.1109/ICTAI.2005.78","DOIUrl":null,"url":null,"abstract":"A new light-weight approach, based on the cross-correlation of system call sequences, is presented to identify normal or intrusive program behavior. The program behavior is represented by the cross-correlation value which can be used to indicate the similarity between two sequences. If two sequences are same, the cross-correlation between them will achieve the maximum value. This method of characterizing program behavior by using cross-correlation offers significant computational advantages over HMM (hidden Markov model) or NN (neural network) methods due to the absence of unnecessary training process. Our experiments using UNM (University of New Mexico) audit data show that the cross-correlation based method can effectively detect intrusive attacks and achieve a low false positive rate","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Intrusion detection based on cross-correlation of system call sequences\",\"authors\":\"Xiaoqiang Zhang, Zhongliang Zhu, P. Fan\",\"doi\":\"10.1109/ICTAI.2005.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new light-weight approach, based on the cross-correlation of system call sequences, is presented to identify normal or intrusive program behavior. The program behavior is represented by the cross-correlation value which can be used to indicate the similarity between two sequences. If two sequences are same, the cross-correlation between them will achieve the maximum value. This method of characterizing program behavior by using cross-correlation offers significant computational advantages over HMM (hidden Markov model) or NN (neural network) methods due to the absence of unnecessary training process. Our experiments using UNM (University of New Mexico) audit data show that the cross-correlation based method can effectively detect intrusive attacks and achieve a low false positive rate\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于系统调用序列相互关联的轻量级方法来识别正常或侵入性的程序行为。程序行为用互相关值来表示,互相关值可以用来表示两个序列之间的相似度。当两个序列相同时,它们之间的相互关系将达到最大值。由于没有不必要的训练过程,这种通过使用互相关来表征程序行为的方法比HMM(隐马尔可夫模型)或NN(神经网络)方法具有显著的计算优势。我们利用新墨西哥大学的审计数据进行的实验表明,基于互相关的方法可以有效地检测入侵攻击,并实现低误报率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion detection based on cross-correlation of system call sequences
A new light-weight approach, based on the cross-correlation of system call sequences, is presented to identify normal or intrusive program behavior. The program behavior is represented by the cross-correlation value which can be used to indicate the similarity between two sequences. If two sequences are same, the cross-correlation between them will achieve the maximum value. This method of characterizing program behavior by using cross-correlation offers significant computational advantages over HMM (hidden Markov model) or NN (neural network) methods due to the absence of unnecessary training process. Our experiments using UNM (University of New Mexico) audit data show that the cross-correlation based method can effectively detect intrusive attacks and achieve a low false positive rate
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信