分数阶Levy运动的Hurst指数估计的统计性质

V. Shergin, L. Chala, S. Udovenko
{"title":"分数阶Levy运动的Hurst指数估计的统计性质","authors":"V. Shergin, L. Chala, S. Udovenko","doi":"10.1109/TCSET49122.2020.235421","DOIUrl":null,"url":null,"abstract":"In this paper, the model of fractional Levy motion is studied. Conventional methods for estimating the Hurst exponent are inapplicable to such processes because of the heavy tails. The method of fractional moments makes it possible to estimate Hurst exponent both for heavy-tailed processes and for processes with long-range dependence. The obtained estimate is simple in software implementation and applicable according to numerical results. Studying the statistical properties of this estimate (such as consistency and unbiasedness proof, mean square error estimating) as well as finding the optimal values of fractional moment is of current interest.","PeriodicalId":389689,"journal":{"name":"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Properties of the Hurst Exponent Estimates for Fractional Levy Motion\",\"authors\":\"V. Shergin, L. Chala, S. Udovenko\",\"doi\":\"10.1109/TCSET49122.2020.235421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the model of fractional Levy motion is studied. Conventional methods for estimating the Hurst exponent are inapplicable to such processes because of the heavy tails. The method of fractional moments makes it possible to estimate Hurst exponent both for heavy-tailed processes and for processes with long-range dependence. The obtained estimate is simple in software implementation and applicable according to numerical results. Studying the statistical properties of this estimate (such as consistency and unbiasedness proof, mean square error estimating) as well as finding the optimal values of fractional moment is of current interest.\",\"PeriodicalId\":389689,\"journal\":{\"name\":\"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TCSET49122.2020.235421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCSET49122.2020.235421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了分数阶Levy运动模型。传统的赫斯特指数估计方法由于重尾而不适用于这类过程。分数矩法使得对重尾过程和具有长程依赖的过程的赫斯特指数的估计成为可能。所得估计在软件实现上简单,数值计算结果具有一定的适用性。研究这种估计的统计性质(如一致性和无偏性证明,均方误差估计)以及找到分数矩的最优值是当前的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Properties of the Hurst Exponent Estimates for Fractional Levy Motion
In this paper, the model of fractional Levy motion is studied. Conventional methods for estimating the Hurst exponent are inapplicable to such processes because of the heavy tails. The method of fractional moments makes it possible to estimate Hurst exponent both for heavy-tailed processes and for processes with long-range dependence. The obtained estimate is simple in software implementation and applicable according to numerical results. Studying the statistical properties of this estimate (such as consistency and unbiasedness proof, mean square error estimating) as well as finding the optimal values of fractional moment is of current interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信