Aleksandra Przyłucka, A. Cebo-Rudnicka, M. Rywotycki, J. Augustyn-Nadzieja, Z. Malinowski
{"title":"S235钢高温氧化过程中水垢形成模型的建立与验证","authors":"Aleksandra Przyłucka, A. Cebo-Rudnicka, M. Rywotycki, J. Augustyn-Nadzieja, Z. Malinowski","doi":"10.7494/CMMS.2020.4.0723","DOIUrl":null,"url":null,"abstract":"Every year rapid industrialization and the following urbanization fuel the global demand for steel. The use of steel products contributes to the sustainable development of society. The scale growth mechanism accompanies the high-temperature plastic working of metals and alloys. The article focuses on the thickness of the scale formed as a result of annealing steel samples in a furnace. Samples made of S235 (A283C) steel were heated at two temperatures, 1100°C and 1200°C, for 8 minutes. The amount of scale formed was determined on the basis of photos taken with a light microscope. The transformed equations of steel oxidation kinetics were used in the computational part. The scale thickness obtained numerically corresponded to the scale formed in real conditions. The aim of the research was to adjust the scale growth model on steel so that it gives correct results in relation to the actual thickness of the formed oxidized layer.","PeriodicalId":401877,"journal":{"name":"Computer Methods in Material Science","volume":"5 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development and verification of the scale formation model during high temperature oxidation for S235 steel\",\"authors\":\"Aleksandra Przyłucka, A. Cebo-Rudnicka, M. Rywotycki, J. Augustyn-Nadzieja, Z. Malinowski\",\"doi\":\"10.7494/CMMS.2020.4.0723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every year rapid industrialization and the following urbanization fuel the global demand for steel. The use of steel products contributes to the sustainable development of society. The scale growth mechanism accompanies the high-temperature plastic working of metals and alloys. The article focuses on the thickness of the scale formed as a result of annealing steel samples in a furnace. Samples made of S235 (A283C) steel were heated at two temperatures, 1100°C and 1200°C, for 8 minutes. The amount of scale formed was determined on the basis of photos taken with a light microscope. The transformed equations of steel oxidation kinetics were used in the computational part. The scale thickness obtained numerically corresponded to the scale formed in real conditions. The aim of the research was to adjust the scale growth model on steel so that it gives correct results in relation to the actual thickness of the formed oxidized layer.\",\"PeriodicalId\":401877,\"journal\":{\"name\":\"Computer Methods in Material Science\",\"volume\":\"5 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/CMMS.2020.4.0723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/CMMS.2020.4.0723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and verification of the scale formation model during high temperature oxidation for S235 steel
Every year rapid industrialization and the following urbanization fuel the global demand for steel. The use of steel products contributes to the sustainable development of society. The scale growth mechanism accompanies the high-temperature plastic working of metals and alloys. The article focuses on the thickness of the scale formed as a result of annealing steel samples in a furnace. Samples made of S235 (A283C) steel were heated at two temperatures, 1100°C and 1200°C, for 8 minutes. The amount of scale formed was determined on the basis of photos taken with a light microscope. The transformed equations of steel oxidation kinetics were used in the computational part. The scale thickness obtained numerically corresponded to the scale formed in real conditions. The aim of the research was to adjust the scale growth model on steel so that it gives correct results in relation to the actual thickness of the formed oxidized layer.