基于潜在结构化支持向量机的弱标记数据对象自动标注

Christian X. Ries, Fabian Richter, Stefan Romberg, R. Lienhart
{"title":"基于潜在结构化支持向量机的弱标记数据对象自动标注","authors":"Christian X. Ries, Fabian Richter, Stefan Romberg, R. Lienhart","doi":"10.1109/CBMI.2014.6849838","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach to automatic object annotation. We are given a set of positive images which all contain a certain object and our goal is to automatically determine the position of said object in each image. Our approach first applies a heuristic to identify initial bounding boxes based on color and gradient features. This heuristic is based on image and feature statistics. Then, the initial boxes are refined by a latent structured SVM training algorithm which is based on the CCCP training algorithm. We show that our approach outperforms previous work on multiple datasets.","PeriodicalId":103056,"journal":{"name":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic object annotation from weakly labeled data with latent structured SVM\",\"authors\":\"Christian X. Ries, Fabian Richter, Stefan Romberg, R. Lienhart\",\"doi\":\"10.1109/CBMI.2014.6849838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an approach to automatic object annotation. We are given a set of positive images which all contain a certain object and our goal is to automatically determine the position of said object in each image. Our approach first applies a heuristic to identify initial bounding boxes based on color and gradient features. This heuristic is based on image and feature statistics. Then, the initial boxes are refined by a latent structured SVM training algorithm which is based on the CCCP training algorithm. We show that our approach outperforms previous work on multiple datasets.\",\"PeriodicalId\":103056,\"journal\":{\"name\":\"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2014.6849838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2014.6849838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种自动对象标注的方法。我们给定一组包含某个物体的正图像,我们的目标是自动确定该物体在每个图像中的位置。我们的方法首先应用启发式方法来识别基于颜色和梯度特征的初始边界框。这种启发式算法基于图像和特征统计。然后,利用基于CCCP训练算法的潜在结构化SVM训练算法对初始盒进行细化。我们表明,我们的方法优于以前在多个数据集上的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic object annotation from weakly labeled data with latent structured SVM
In this paper we present an approach to automatic object annotation. We are given a set of positive images which all contain a certain object and our goal is to automatically determine the position of said object in each image. Our approach first applies a heuristic to identify initial bounding boxes based on color and gradient features. This heuristic is based on image and feature statistics. Then, the initial boxes are refined by a latent structured SVM training algorithm which is based on the CCCP training algorithm. We show that our approach outperforms previous work on multiple datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信