非同质学术人力系统中停留时间的半马尔可夫模型

A. Udom
{"title":"非同质学术人力系统中停留时间的半马尔可夫模型","authors":"A. Udom","doi":"10.4314/GJMAS.V8I1.50813","DOIUrl":null,"url":null,"abstract":"The semi-Markov approach to a non-homogenous manpower system is considered. The mean duration of stay in a grade and the total duration of stay in the system are obtained. A renewal type equation is developed and used in deriving the limiting distribution of the semi – Markov process. Empirical estimators of the semi-Markov parameters which are uniformly consistent and asymptotically normally distributed are used to obtain the average length of stay for the academic manpower of the University of Nigeria.","PeriodicalId":126381,"journal":{"name":"Global Journal of Mathematical Sciences","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-Markov model for the duration of stay in a non-homogenous academic manpower system\",\"authors\":\"A. Udom\",\"doi\":\"10.4314/GJMAS.V8I1.50813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The semi-Markov approach to a non-homogenous manpower system is considered. The mean duration of stay in a grade and the total duration of stay in the system are obtained. A renewal type equation is developed and used in deriving the limiting distribution of the semi – Markov process. Empirical estimators of the semi-Markov parameters which are uniformly consistent and asymptotically normally distributed are used to obtain the average length of stay for the academic manpower of the University of Nigeria.\",\"PeriodicalId\":126381,\"journal\":{\"name\":\"Global Journal of Mathematical Sciences\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/GJMAS.V8I1.50813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/GJMAS.V8I1.50813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究非齐次人力系统的半马尔可夫方法。得到学生在某一年级的平均停留时间和在该系统的总停留时间。建立了一个更新型方程,并将其用于推导半马尔可夫过程的极限分布。利用均匀一致且渐近正态分布的半马尔可夫参数的经验估计,得到了尼日利亚大学学术人员的平均停留时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semi-Markov model for the duration of stay in a non-homogenous academic manpower system
The semi-Markov approach to a non-homogenous manpower system is considered. The mean duration of stay in a grade and the total duration of stay in the system are obtained. A renewal type equation is developed and used in deriving the limiting distribution of the semi – Markov process. Empirical estimators of the semi-Markov parameters which are uniformly consistent and asymptotically normally distributed are used to obtain the average length of stay for the academic manpower of the University of Nigeria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信