{"title":"EnHiC:一般游戏的强制爬山系统","authors":"Amin Babadi, B. Omoomi, G. Kendall","doi":"10.1109/CIG.2015.7317907","DOIUrl":null,"url":null,"abstract":"Accurate decision making in games has always been a very complex and yet interesting problem in Artificial Intelligence (AI). General video game playing (GVGP) is a new branch of AI whose target is to design agents that are able to win in every unknown game environment by choosing wise decisions. This paper proposes a new search methodology based on enforced hill climbing for using in GVGP and we evaluate its performance on the benchmarks of the general video game AI competition (GVG-AI). Also a simple and efficient heuristic function for GVGP is proposed. The results show that EnHiC outperforms several well-known and successful methods in the GVG-AI competition.","PeriodicalId":244862,"journal":{"name":"2015 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"EnHiC: An enforced hill climbing based system for general game playing\",\"authors\":\"Amin Babadi, B. Omoomi, G. Kendall\",\"doi\":\"10.1109/CIG.2015.7317907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate decision making in games has always been a very complex and yet interesting problem in Artificial Intelligence (AI). General video game playing (GVGP) is a new branch of AI whose target is to design agents that are able to win in every unknown game environment by choosing wise decisions. This paper proposes a new search methodology based on enforced hill climbing for using in GVGP and we evaluate its performance on the benchmarks of the general video game AI competition (GVG-AI). Also a simple and efficient heuristic function for GVGP is proposed. The results show that EnHiC outperforms several well-known and successful methods in the GVG-AI competition.\",\"PeriodicalId\":244862,\"journal\":{\"name\":\"2015 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2015.7317907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2015.7317907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EnHiC: An enforced hill climbing based system for general game playing
Accurate decision making in games has always been a very complex and yet interesting problem in Artificial Intelligence (AI). General video game playing (GVGP) is a new branch of AI whose target is to design agents that are able to win in every unknown game environment by choosing wise decisions. This paper proposes a new search methodology based on enforced hill climbing for using in GVGP and we evaluate its performance on the benchmarks of the general video game AI competition (GVG-AI). Also a simple and efficient heuristic function for GVGP is proposed. The results show that EnHiC outperforms several well-known and successful methods in the GVG-AI competition.