卡尔斯鲁厄人形头部

T. Asfour, K. Welke, P. Azad, A. Ude, R. Dillmann
{"title":"卡尔斯鲁厄人形头部","authors":"T. Asfour, K. Welke, P. Azad, A. Ude, R. Dillmann","doi":"10.1109/ICHR.2008.4755993","DOIUrl":null,"url":null,"abstract":"The design and construction of truly humanoid robots that can perceive and interact with the environment depends significantly on their perception capabilities. In this paper we present the Karlsruhe Humanoid Head, which has been designed to be used both as part of our humanoid robots ARMAR-IIIa and ARMAR-IIIb and as a stand-alone robot head for studying various visual perception tasks in the context of object recognition and human-robot interaction. The head has seven degrees of freedom (DoF). The eyes have a common tilt and can pan independently. Each eye is equipped with two digital color cameras, one with a wide-angle lens for peripheral vision and one with a narrow-angle lens for foveal vision to allow simple visuo-motor behaviors. Among these are tracking and saccadic motions towards salient regions, as well as more complex visual tasks such as hand-eye coordination. We present the mechatronic design concept, the motor control system, the sensor system and the computational system. To demonstrate the capabilities of the head, we present accuracy test results, and the implementation of both open-loop and closed-loop control on the head.","PeriodicalId":402020,"journal":{"name":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"The Karlsruhe Humanoid Head\",\"authors\":\"T. Asfour, K. Welke, P. Azad, A. Ude, R. Dillmann\",\"doi\":\"10.1109/ICHR.2008.4755993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and construction of truly humanoid robots that can perceive and interact with the environment depends significantly on their perception capabilities. In this paper we present the Karlsruhe Humanoid Head, which has been designed to be used both as part of our humanoid robots ARMAR-IIIa and ARMAR-IIIb and as a stand-alone robot head for studying various visual perception tasks in the context of object recognition and human-robot interaction. The head has seven degrees of freedom (DoF). The eyes have a common tilt and can pan independently. Each eye is equipped with two digital color cameras, one with a wide-angle lens for peripheral vision and one with a narrow-angle lens for foveal vision to allow simple visuo-motor behaviors. Among these are tracking and saccadic motions towards salient regions, as well as more complex visual tasks such as hand-eye coordination. We present the mechatronic design concept, the motor control system, the sensor system and the computational system. To demonstrate the capabilities of the head, we present accuracy test results, and the implementation of both open-loop and closed-loop control on the head.\",\"PeriodicalId\":402020,\"journal\":{\"name\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHR.2008.4755993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHR.2008.4755993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

摘要

能够感知环境并与之互动的真正类人机器人的设计和建造在很大程度上取决于它们的感知能力。在本文中,我们介绍了卡尔斯鲁厄人形头部,它被设计成既可以作为我们的人形机器人ARMAR-IIIa和ARMAR-IIIb的一部分,也可以作为一个独立的机器人头部,用于研究物体识别和人机交互背景下的各种视觉感知任务。头部有七个自由度(DoF)。眼睛有一个共同的倾斜,可以独立移动。每只眼睛都配备了两个数码彩色摄像头,一个有广角镜头用于周边视觉,另一个有窄角镜头用于中央凹视觉,以便进行简单的视觉运动行为。其中包括对突出区域的跟踪和跳眼运动,以及更复杂的视觉任务,如手眼协调。介绍了机电一体化的设计思想、电机控制系统、传感器系统和计算系统。为了展示头部的能力,我们给出了精度测试结果,以及头部开环和闭环控制的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Karlsruhe Humanoid Head
The design and construction of truly humanoid robots that can perceive and interact with the environment depends significantly on their perception capabilities. In this paper we present the Karlsruhe Humanoid Head, which has been designed to be used both as part of our humanoid robots ARMAR-IIIa and ARMAR-IIIb and as a stand-alone robot head for studying various visual perception tasks in the context of object recognition and human-robot interaction. The head has seven degrees of freedom (DoF). The eyes have a common tilt and can pan independently. Each eye is equipped with two digital color cameras, one with a wide-angle lens for peripheral vision and one with a narrow-angle lens for foveal vision to allow simple visuo-motor behaviors. Among these are tracking and saccadic motions towards salient regions, as well as more complex visual tasks such as hand-eye coordination. We present the mechatronic design concept, the motor control system, the sensor system and the computational system. To demonstrate the capabilities of the head, we present accuracy test results, and the implementation of both open-loop and closed-loop control on the head.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信