基于低通滤波方案的自组织映射学习算法

M. Tucci, Marco Raugi
{"title":"基于低通滤波方案的自组织映射学习算法","authors":"M. Tucci, Marco Raugi","doi":"10.1109/ICAIS.2009.15","DOIUrl":null,"url":null,"abstract":"In this work a novel training algorithm is proposed for the formation of topology preserving maps. In the proposed algorithm the weights are updated incrementally by using a higher-order difference equation, which implements a low pass digital filter. It is shown that by suitably choosing the filter the learning process can adaptively follow a specific dynamic.","PeriodicalId":161840,"journal":{"name":"2009 International Conference on Adaptive and Intelligent Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Learning Algorithm for Self-Organizing Maps Based on a Low-Pass Filter Scheme\",\"authors\":\"M. Tucci, Marco Raugi\",\"doi\":\"10.1109/ICAIS.2009.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a novel training algorithm is proposed for the formation of topology preserving maps. In the proposed algorithm the weights are updated incrementally by using a higher-order difference equation, which implements a low pass digital filter. It is shown that by suitably choosing the filter the learning process can adaptively follow a specific dynamic.\",\"PeriodicalId\":161840,\"journal\":{\"name\":\"2009 International Conference on Adaptive and Intelligent Systems\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Adaptive and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIS.2009.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Adaptive and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIS.2009.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的拓扑保持映射的训练算法。该算法利用高阶差分方程增量更新权值,实现了低通数字滤波器。结果表明,通过适当地选择滤波器,学习过程可以自适应地遵循特定的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Learning Algorithm for Self-Organizing Maps Based on a Low-Pass Filter Scheme
In this work a novel training algorithm is proposed for the formation of topology preserving maps. In the proposed algorithm the weights are updated incrementally by using a higher-order difference equation, which implements a low pass digital filter. It is shown that by suitably choosing the filter the learning process can adaptively follow a specific dynamic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信