铋含量对长期热暴露下SAC+Bi无铅焊料力学性能演变的影响

Mohammad Al Ahsan, S. Hasan, J. Suhling, P. Lall
{"title":"铋含量对长期热暴露下SAC+Bi无铅焊料力学性能演变的影响","authors":"Mohammad Al Ahsan, S. Hasan, J. Suhling, P. Lall","doi":"10.1109/iTherm54085.2022.9899562","DOIUrl":null,"url":null,"abstract":"Solder joints in electronic assemblies are frequently exposed to thermal cycling environments in their service life or during accelerated life testing where temperature variations occur from very low to high temperature. In our recent papers, the mechanical behavior evolutions occurring in SAC305 and SAC+3%Bi (SAC_Q) lead free solders have been characterized for up to 20 days of exposure to four different thermal profiles including isothermal aging, slow thermal cycling, thermal shock, and thermal ramping. In the current investigation, we have extended our prior study to examine several different SAC+Bi solder alloys with various bismuth contents. In particular, a family of SAC+Bi alloys with 1%, 2%, and 3% Bi were studied with four different thermal exposure profiles (isothermal aging, slow thermal cycling, thermal shock, and thermal ramping). The primary objective of this study was to determine how much bismuth is needed in the lead-free alloy to mitigate microstructure and material property evolutions during thermal exposuresUniaxial miniature bulk specimens were prepared for the three SAC+Bi alloys using a controlled reflow profile. After fabrication, the samples were then preconditioned by thermal exposure under stress-free conditions for various durations up to 100 days. After preconditioning via thermal exposures, the samples were subjected to stress-strain testing to measure their mechanical properties including effective elastic modulus, and Ultimate Tensile Strength (UTS).For the miniature bulk solder samples of each SAC+Bi alloy, the evolutions of the mechanical properties for each thermal exposure profile were characterized as a function of the duration of thermal exposure. For all of the alloys, the degradations for the slow thermal cycling exposure were the largest, while those for isothermal aging were surprisingly the smallest. Increasing the Bi content of the SAC+Bi alloy led to increased mitigation of thermal degradation effects for all of the exposure profiles. Reduced microstructural evolution in the SAC+Bi alloy samples was found to be the major reason for the improved resistance to mechanical behavior changes. The tensile strength results for samples with 2% Bi and 3% were nearly the same, suggesting that lower bismuth content could be sufficient for many applications.","PeriodicalId":351706,"journal":{"name":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Effect of Bismuth Content on Mechanical Property Evolution of SAC+Bi Lead Free Solders Subjected to Long Term Thermal Exposures\",\"authors\":\"Mohammad Al Ahsan, S. Hasan, J. Suhling, P. Lall\",\"doi\":\"10.1109/iTherm54085.2022.9899562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solder joints in electronic assemblies are frequently exposed to thermal cycling environments in their service life or during accelerated life testing where temperature variations occur from very low to high temperature. In our recent papers, the mechanical behavior evolutions occurring in SAC305 and SAC+3%Bi (SAC_Q) lead free solders have been characterized for up to 20 days of exposure to four different thermal profiles including isothermal aging, slow thermal cycling, thermal shock, and thermal ramping. In the current investigation, we have extended our prior study to examine several different SAC+Bi solder alloys with various bismuth contents. In particular, a family of SAC+Bi alloys with 1%, 2%, and 3% Bi were studied with four different thermal exposure profiles (isothermal aging, slow thermal cycling, thermal shock, and thermal ramping). The primary objective of this study was to determine how much bismuth is needed in the lead-free alloy to mitigate microstructure and material property evolutions during thermal exposuresUniaxial miniature bulk specimens were prepared for the three SAC+Bi alloys using a controlled reflow profile. After fabrication, the samples were then preconditioned by thermal exposure under stress-free conditions for various durations up to 100 days. After preconditioning via thermal exposures, the samples were subjected to stress-strain testing to measure their mechanical properties including effective elastic modulus, and Ultimate Tensile Strength (UTS).For the miniature bulk solder samples of each SAC+Bi alloy, the evolutions of the mechanical properties for each thermal exposure profile were characterized as a function of the duration of thermal exposure. For all of the alloys, the degradations for the slow thermal cycling exposure were the largest, while those for isothermal aging were surprisingly the smallest. Increasing the Bi content of the SAC+Bi alloy led to increased mitigation of thermal degradation effects for all of the exposure profiles. Reduced microstructural evolution in the SAC+Bi alloy samples was found to be the major reason for the improved resistance to mechanical behavior changes. The tensile strength results for samples with 2% Bi and 3% were nearly the same, suggesting that lower bismuth content could be sufficient for many applications.\",\"PeriodicalId\":351706,\"journal\":{\"name\":\"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iTherm54085.2022.9899562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iTherm54085.2022.9899562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电子组件中的焊点在其使用寿命或在加速寿命测试期间经常暴露在热循环环境中,温度变化从极低到高温。在我们最近的论文中,SAC305和SAC+3%Bi (SAC_Q)无铅焊料在四种不同的热环境下暴露长达20天,包括等温老化、慢热循环、热冲击和热斜坡,对其力学行为的演变进行了表征。在目前的研究中,我们扩展了之前的研究,研究了几种不同铋含量的SAC+Bi钎料合金。特别地,在四种不同的热暴露曲线(等温时效、慢热循环、热冲击和热斜坡)下研究了含有1%、2%和3% Bi的SAC+Bi合金族。本研究的主要目的是确定在无铅合金中需要多少铋来缓解热暴露期间的微观结构和材料性能演变。使用受控回流剖面制备了三种SAC+Bi合金的单轴微型体试样。制作完成后,样品在无应力条件下通过热暴露进行预处理,最长可达100天。通过热暴露预处理后,对样品进行应力应变测试,以测量其机械性能,包括有效弹性模量和极限拉伸强度(UTS)。对于每种SAC+Bi合金的微型体焊料样品,每种热暴露剖面的力学性能演变特征为热暴露时间的函数。对于所有合金,缓慢热循环暴露的退化最大,而等温时效的退化最小。增加SAC+Bi合金的Bi含量导致所有暴露剖面的热降解效应的缓解增加。减小了SAC+Bi合金试样的微观组织演变是其抗力学行为变化能力提高的主要原因。含有2%铋和3%铋的样品的拉伸强度结果几乎相同,这表明较低的铋含量可以满足许多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Bismuth Content on Mechanical Property Evolution of SAC+Bi Lead Free Solders Subjected to Long Term Thermal Exposures
Solder joints in electronic assemblies are frequently exposed to thermal cycling environments in their service life or during accelerated life testing where temperature variations occur from very low to high temperature. In our recent papers, the mechanical behavior evolutions occurring in SAC305 and SAC+3%Bi (SAC_Q) lead free solders have been characterized for up to 20 days of exposure to four different thermal profiles including isothermal aging, slow thermal cycling, thermal shock, and thermal ramping. In the current investigation, we have extended our prior study to examine several different SAC+Bi solder alloys with various bismuth contents. In particular, a family of SAC+Bi alloys with 1%, 2%, and 3% Bi were studied with four different thermal exposure profiles (isothermal aging, slow thermal cycling, thermal shock, and thermal ramping). The primary objective of this study was to determine how much bismuth is needed in the lead-free alloy to mitigate microstructure and material property evolutions during thermal exposuresUniaxial miniature bulk specimens were prepared for the three SAC+Bi alloys using a controlled reflow profile. After fabrication, the samples were then preconditioned by thermal exposure under stress-free conditions for various durations up to 100 days. After preconditioning via thermal exposures, the samples were subjected to stress-strain testing to measure their mechanical properties including effective elastic modulus, and Ultimate Tensile Strength (UTS).For the miniature bulk solder samples of each SAC+Bi alloy, the evolutions of the mechanical properties for each thermal exposure profile were characterized as a function of the duration of thermal exposure. For all of the alloys, the degradations for the slow thermal cycling exposure were the largest, while those for isothermal aging were surprisingly the smallest. Increasing the Bi content of the SAC+Bi alloy led to increased mitigation of thermal degradation effects for all of the exposure profiles. Reduced microstructural evolution in the SAC+Bi alloy samples was found to be the major reason for the improved resistance to mechanical behavior changes. The tensile strength results for samples with 2% Bi and 3% were nearly the same, suggesting that lower bismuth content could be sufficient for many applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信