多处理机系统实时调度的遗传方法

G. Sebestyen, A. Hangan
{"title":"多处理机系统实时调度的遗传方法","authors":"G. Sebestyen, A. Hangan","doi":"10.1109/ICCP.2012.6356198","DOIUrl":null,"url":null,"abstract":"Real-time scheduling of concurrent tasks on multiprocessor systems is a complex job, which implies finding a feasible solution in a multi-dimensional space. In order to reduce the search time we propose a genetic approach for two important aspects of the scheduling problem: task allocation and deadline assignment. We combine a genetic search engine with a simulation tool in order to find a scheduling strategy that assures the fulfillment of all time restrictions. Our system model includes a wide range of multiprocessor systems, from parallel systems to network-based distributed ones and from independent task sets to chains of tasks organized as concurrent transactions. The paper gives details regarding the adaptation of genetic operators for the scheduling problem.","PeriodicalId":406461,"journal":{"name":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic approach for real-time scheduling on multiprocessor systems\",\"authors\":\"G. Sebestyen, A. Hangan\",\"doi\":\"10.1109/ICCP.2012.6356198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time scheduling of concurrent tasks on multiprocessor systems is a complex job, which implies finding a feasible solution in a multi-dimensional space. In order to reduce the search time we propose a genetic approach for two important aspects of the scheduling problem: task allocation and deadline assignment. We combine a genetic search engine with a simulation tool in order to find a scheduling strategy that assures the fulfillment of all time restrictions. Our system model includes a wide range of multiprocessor systems, from parallel systems to network-based distributed ones and from independent task sets to chains of tasks organized as concurrent transactions. The paper gives details regarding the adaptation of genetic operators for the scheduling problem.\",\"PeriodicalId\":406461,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2012.6356198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2012.6356198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多处理器系统上并发任务的实时调度是一项复杂的工作,需要在多维空间中寻找可行的解决方案。为了减少搜索时间,我们提出了一种遗传方法来解决调度问题的两个重要方面:任务分配和期限分配。我们将遗传搜索引擎与仿真工具相结合,以找到一种保证满足所有时间限制的调度策略。我们的系统模型包括广泛的多处理器系统,从并行系统到基于网络的分布式系统,从独立任务集到作为并发事务组织的任务链。详细介绍了遗传算子对调度问题的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic approach for real-time scheduling on multiprocessor systems
Real-time scheduling of concurrent tasks on multiprocessor systems is a complex job, which implies finding a feasible solution in a multi-dimensional space. In order to reduce the search time we propose a genetic approach for two important aspects of the scheduling problem: task allocation and deadline assignment. We combine a genetic search engine with a simulation tool in order to find a scheduling strategy that assures the fulfillment of all time restrictions. Our system model includes a wide range of multiprocessor systems, from parallel systems to network-based distributed ones and from independent task sets to chains of tasks organized as concurrent transactions. The paper gives details regarding the adaptation of genetic operators for the scheduling problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信