随机约束下优化医疗干预预算的交替聚类与贝叶斯推理方法

Chen He, B. Dalmas, Xiaolan Xie
{"title":"随机约束下优化医疗干预预算的交替聚类与贝叶斯推理方法","authors":"Chen He, B. Dalmas, Xiaolan Xie","doi":"10.1109/CASE48305.2020.9216791","DOIUrl":null,"url":null,"abstract":"Unplanned readmissions to the emergency department (ED) have been identified as a key factor resulting in a negative effect on subjects’ health and healthcare resource scheduling. Often, the readmission prediction is modeled as a binary classification problem whose objective is to predict if a subject will be readmitted or not. Nevertheless, it ignores the uncertainty nature of readmission and usually results in poor prediction quality. In this paper, the problem is defined as a chance-constrained medical intervention rationing problem: at-risk subjects are targeted and given supplemental medical interventions, while the remaining subjects are treated as outpatients. The objective is to profile subjects, identify at-risk subjects, and select specific groups of subjects to which additional medical interventions are recommended, while addressing the unknown number of at-risk subjects and the unknown subjects’ readmission risks. We propose a white-box approach named Alternating Clustering and Bayesian Inference (ACBI) and investigate its efficiency on a real-life readmission data set. Results are promising and show the method could lead up to a 34.42% reduction in readmission rate.","PeriodicalId":212181,"journal":{"name":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ACBI: An Alternating Clustering and Bayesian Inference approach for optimizing medical intervention budget under chance constraints\",\"authors\":\"Chen He, B. Dalmas, Xiaolan Xie\",\"doi\":\"10.1109/CASE48305.2020.9216791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unplanned readmissions to the emergency department (ED) have been identified as a key factor resulting in a negative effect on subjects’ health and healthcare resource scheduling. Often, the readmission prediction is modeled as a binary classification problem whose objective is to predict if a subject will be readmitted or not. Nevertheless, it ignores the uncertainty nature of readmission and usually results in poor prediction quality. In this paper, the problem is defined as a chance-constrained medical intervention rationing problem: at-risk subjects are targeted and given supplemental medical interventions, while the remaining subjects are treated as outpatients. The objective is to profile subjects, identify at-risk subjects, and select specific groups of subjects to which additional medical interventions are recommended, while addressing the unknown number of at-risk subjects and the unknown subjects’ readmission risks. We propose a white-box approach named Alternating Clustering and Bayesian Inference (ACBI) and investigate its efficiency on a real-life readmission data set. Results are promising and show the method could lead up to a 34.42% reduction in readmission rate.\",\"PeriodicalId\":212181,\"journal\":{\"name\":\"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE48305.2020.9216791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE48305.2020.9216791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

意外再入院急诊科(ED)已被确定为一个关键因素,导致受试者的健康和医疗资源调度的负面影响。通常,再入院预测被建模为一个二元分类问题,其目标是预测一个受试者是否会再入院。然而,它忽略了再入院的不确定性,通常导致预测质量差。本文将该问题定义为一个机会约束的医疗干预配给问题:针对有风险的受试者,给予补充医疗干预,其余受试者作为门诊患者进行治疗。目的是对受试者进行概况分析,确定有风险的受试者,并选择建议进行额外医疗干预的特定受试者群体,同时解决未知数量的有风险受试者和未知受试者的再入院风险。我们提出了一种名为交替聚类和贝叶斯推理(ACBI)的白盒方法,并研究了它在现实生活中的再入院数据集上的效率。结果表明,该方法可使再入院率降低34.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ACBI: An Alternating Clustering and Bayesian Inference approach for optimizing medical intervention budget under chance constraints
Unplanned readmissions to the emergency department (ED) have been identified as a key factor resulting in a negative effect on subjects’ health and healthcare resource scheduling. Often, the readmission prediction is modeled as a binary classification problem whose objective is to predict if a subject will be readmitted or not. Nevertheless, it ignores the uncertainty nature of readmission and usually results in poor prediction quality. In this paper, the problem is defined as a chance-constrained medical intervention rationing problem: at-risk subjects are targeted and given supplemental medical interventions, while the remaining subjects are treated as outpatients. The objective is to profile subjects, identify at-risk subjects, and select specific groups of subjects to which additional medical interventions are recommended, while addressing the unknown number of at-risk subjects and the unknown subjects’ readmission risks. We propose a white-box approach named Alternating Clustering and Bayesian Inference (ACBI) and investigate its efficiency on a real-life readmission data set. Results are promising and show the method could lead up to a 34.42% reduction in readmission rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信