基于神经动力学的迭代重加权凸优化稀疏信号重构

Hangjun Che, Jun Wang, A. Cichocki
{"title":"基于神经动力学的迭代重加权凸优化稀疏信号重构","authors":"Hangjun Che, Jun Wang, A. Cichocki","doi":"10.1109/ICIST55546.2022.9926780","DOIUrl":null,"url":null,"abstract":"In this paper, sparse signal reconstruction is for-mulated a q-ratio minimization problem subjecting to linear underdetermined equations. In view of the nonconvexity of the objective function, the q-ratio formulation with $q=2$ is approximately reformulated as an iteratively reweighted convex optimization problem in the majorization-minimization frame-work. A neurodynamic optimization approach is introduced to solve the formulated problem iteratively. The experimental results on sparse signal reconstruction are discussed to demonstrate the performance of the proposed approach.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurodynamics-based Iteratively Reweighted Convex Optimization for Sparse Signal Reconstruction\",\"authors\":\"Hangjun Che, Jun Wang, A. Cichocki\",\"doi\":\"10.1109/ICIST55546.2022.9926780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, sparse signal reconstruction is for-mulated a q-ratio minimization problem subjecting to linear underdetermined equations. In view of the nonconvexity of the objective function, the q-ratio formulation with $q=2$ is approximately reformulated as an iteratively reweighted convex optimization problem in the majorization-minimization frame-work. A neurodynamic optimization approach is introduced to solve the formulated problem iteratively. The experimental results on sparse signal reconstruction are discussed to demonstrate the performance of the proposed approach.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将稀疏信号重构描述为线性欠定方程下的q比最小化问题。考虑到目标函数的非凸性,将q=2时的q比公式近似地重新表述为最大化-最小化框架下的迭代重加权凸优化问题。引入一种神经动力学优化方法,迭代求解公式化问题。讨论了稀疏信号重建的实验结果,以验证该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurodynamics-based Iteratively Reweighted Convex Optimization for Sparse Signal Reconstruction
In this paper, sparse signal reconstruction is for-mulated a q-ratio minimization problem subjecting to linear underdetermined equations. In view of the nonconvexity of the objective function, the q-ratio formulation with $q=2$ is approximately reformulated as an iteratively reweighted convex optimization problem in the majorization-minimization frame-work. A neurodynamic optimization approach is introduced to solve the formulated problem iteratively. The experimental results on sparse signal reconstruction are discussed to demonstrate the performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信