初级景观的局部街区

L. D. Whitley, Andrew M. Sutton
{"title":"初级景观的局部街区","authors":"L. D. Whitley, Andrew M. Sutton","doi":"10.1145/1569901.1569954","DOIUrl":null,"url":null,"abstract":"This paper introduces a new component based model that makes it relatively simple to prove that certain types of landscapes are elementary. We use the model to reconstruct proofs for the Traveling Salesman Problem, Graph Coloring and Min-Cut Graph Partitioning. The same model is then used to efficiently compute the average values over particular partial neighborhoods for these same problems. For Graph Coloring and Min-Cut Graph Partitioning, this computation can be used to focus search on those moves that are most likely to yield an improving move, ignoring moves that cannot yield an improving move. Let x be a candidate solution with objective function value f(x). The mean value of the objective function over the entire landscape is denoted f. Normally in an elementary landscape one can only be sure that a neighborhood includes an improving move (assuming minimization) if f(x) > f. However, by computing the expected value of an appropriate partial neighborhood it is sometimes possible to know that an improving move exists in the partial neighborhood even when f(x) < f.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Partial neighborhoods of elementary landscapes\",\"authors\":\"L. D. Whitley, Andrew M. Sutton\",\"doi\":\"10.1145/1569901.1569954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new component based model that makes it relatively simple to prove that certain types of landscapes are elementary. We use the model to reconstruct proofs for the Traveling Salesman Problem, Graph Coloring and Min-Cut Graph Partitioning. The same model is then used to efficiently compute the average values over particular partial neighborhoods for these same problems. For Graph Coloring and Min-Cut Graph Partitioning, this computation can be used to focus search on those moves that are most likely to yield an improving move, ignoring moves that cannot yield an improving move. Let x be a candidate solution with objective function value f(x). The mean value of the objective function over the entire landscape is denoted f. Normally in an elementary landscape one can only be sure that a neighborhood includes an improving move (assuming minimization) if f(x) > f. However, by computing the expected value of an appropriate partial neighborhood it is sometimes possible to know that an improving move exists in the partial neighborhood even when f(x) < f.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文介绍了一种新的基于组件的模型,使得证明某些类型的景观是基本的相对简单。利用该模型重构了旅行商问题、图着色问题和最小切图划分问题的证明。然后使用相同的模型来有效地计算这些相同问题的特定部分邻域的平均值。对于图着色和最小切图划分,这个计算可以用来集中搜索那些最有可能产生改进的移动,忽略那些不能产生改进的移动。设x为目标函数值为f(x)的候选解。目标函数在整个景观上的平均值表示为f。通常在基本景观中,只有当f(x) > f时,才能确定邻域包含改进移动(假设最小化)。然而,通过计算适当的局部邻域的期望值,有时可能知道在局部邻域中存在改进移动,即使f(x) < f。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial neighborhoods of elementary landscapes
This paper introduces a new component based model that makes it relatively simple to prove that certain types of landscapes are elementary. We use the model to reconstruct proofs for the Traveling Salesman Problem, Graph Coloring and Min-Cut Graph Partitioning. The same model is then used to efficiently compute the average values over particular partial neighborhoods for these same problems. For Graph Coloring and Min-Cut Graph Partitioning, this computation can be used to focus search on those moves that are most likely to yield an improving move, ignoring moves that cannot yield an improving move. Let x be a candidate solution with objective function value f(x). The mean value of the objective function over the entire landscape is denoted f. Normally in an elementary landscape one can only be sure that a neighborhood includes an improving move (assuming minimization) if f(x) > f. However, by computing the expected value of an appropriate partial neighborhood it is sometimes possible to know that an improving move exists in the partial neighborhood even when f(x) < f.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信