快速视频阴影检测的时空融合网络

Jun-Hong Lin, Liansheng Wang
{"title":"快速视频阴影检测的时空融合网络","authors":"Jun-Hong Lin, Liansheng Wang","doi":"10.1145/3574131.3574455","DOIUrl":null,"url":null,"abstract":"Existing video shadow detectors often need postprocessing or additional input to perform better, thereby degrading their video shadow detection speed. In this work, we present a novel spatial-temporal fusion network (STF-Net), which can efficiently detect shadows in videos with real-time speed (30FPS) and postprocessing-free. Our STF-Net is based solely on an attention-based spatial-temporal fusion block, equipping with recurrence and CNNs entirely. Experimental results on ViSha validation dataset show that our network exceeds state-of-the-art methods quantitatively and qualitatively.","PeriodicalId":111802,"journal":{"name":"Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-temporal Fusion Network for Fast Video Shadow Detection\",\"authors\":\"Jun-Hong Lin, Liansheng Wang\",\"doi\":\"10.1145/3574131.3574455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing video shadow detectors often need postprocessing or additional input to perform better, thereby degrading their video shadow detection speed. In this work, we present a novel spatial-temporal fusion network (STF-Net), which can efficiently detect shadows in videos with real-time speed (30FPS) and postprocessing-free. Our STF-Net is based solely on an attention-based spatial-temporal fusion block, equipping with recurrence and CNNs entirely. Experimental results on ViSha validation dataset show that our network exceeds state-of-the-art methods quantitatively and qualitatively.\",\"PeriodicalId\":111802,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3574131.3574455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3574131.3574455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的视频阴影检测器通常需要后处理或额外的输入才能更好地执行,从而降低了其视频阴影检测速度。在这项工作中,我们提出了一种新的时空融合网络(STF-Net),它可以以实时速度(30FPS)和无后处理的方式有效地检测视频中的阴影。我们的STF-Net完全基于一个基于注意力的时空融合块,完全配备了递归和cnn。在ViSha验证数据集上的实验结果表明,我们的网络在数量和质量上都超过了最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-temporal Fusion Network for Fast Video Shadow Detection
Existing video shadow detectors often need postprocessing or additional input to perform better, thereby degrading their video shadow detection speed. In this work, we present a novel spatial-temporal fusion network (STF-Net), which can efficiently detect shadows in videos with real-time speed (30FPS) and postprocessing-free. Our STF-Net is based solely on an attention-based spatial-temporal fusion block, equipping with recurrence and CNNs entirely. Experimental results on ViSha validation dataset show that our network exceeds state-of-the-art methods quantitatively and qualitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信