“真实”与“复杂”网络代码:承诺与挑战

B. Dey, S. Katti, S. Jaggi, D. Katabi, M. Médard, S. Shintre
{"title":"“真实”与“复杂”网络代码:承诺与挑战","authors":"B. Dey, S. Katti, S. Jaggi, D. Katabi, M. Médard, S. Shintre","doi":"10.1109/NETCOD.2008.4476185","DOIUrl":null,"url":null,"abstract":"As an alternative to the algebraic network codes prevalent in the literature, we consider Arithmetic Network Codes (henceforth abbreviated as ANCs), i.e., codes in which interior nodes perform finite precision arithmetic over the real or complex fields. We suggest two applications where using such codes can be advantageous. First, we demonstrate that the multi-resolution behaviour of ANCs potentially outperforms that of algebraic network codes. Second, the interfering and fading nature of wireless channels naturally results in complex linear combinations of transmissions, analogous to ANCs. We then characterize the multicast rates achievable by ANCs, and demonstrate that for high precision arithmetic these are equivalent to those obtained by algebraic network codes. We show the connection between the performance of ANCs and the numerical conditioning of network transform matrices. Using this, we obtain upper and lower bounds on the number of significant bits required to perform the finite precision arithmetic in terms of the network parameters. We compare this with simulation results for randomized and deterministic design of ANCs.","PeriodicalId":186056,"journal":{"name":"2008 Fourth Workshop on Network Coding, Theory and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"\\\"Real\\\" and \\\"Complex\\\" Network Codes: Promises and Challenges\",\"authors\":\"B. Dey, S. Katti, S. Jaggi, D. Katabi, M. Médard, S. Shintre\",\"doi\":\"10.1109/NETCOD.2008.4476185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an alternative to the algebraic network codes prevalent in the literature, we consider Arithmetic Network Codes (henceforth abbreviated as ANCs), i.e., codes in which interior nodes perform finite precision arithmetic over the real or complex fields. We suggest two applications where using such codes can be advantageous. First, we demonstrate that the multi-resolution behaviour of ANCs potentially outperforms that of algebraic network codes. Second, the interfering and fading nature of wireless channels naturally results in complex linear combinations of transmissions, analogous to ANCs. We then characterize the multicast rates achievable by ANCs, and demonstrate that for high precision arithmetic these are equivalent to those obtained by algebraic network codes. We show the connection between the performance of ANCs and the numerical conditioning of network transform matrices. Using this, we obtain upper and lower bounds on the number of significant bits required to perform the finite precision arithmetic in terms of the network parameters. We compare this with simulation results for randomized and deterministic design of ANCs.\",\"PeriodicalId\":186056,\"journal\":{\"name\":\"2008 Fourth Workshop on Network Coding, Theory and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth Workshop on Network Coding, Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NETCOD.2008.4476185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth Workshop on Network Coding, Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NETCOD.2008.4476185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

作为文献中普遍存在的代数网络代码的替代方案,我们考虑算术网络代码(以下简称为ANCs),即内部节点在实域或复杂域上执行有限精度算术的代码。我们建议在两种应用中使用这种代码是有利的。首先,我们证明了anc的多分辨率行为可能优于代数网络代码。其次,无线信道的干扰和衰落特性自然会导致传输的复杂线性组合,类似于自动通信系统。然后,我们描述了ANCs可实现的组播速率,并证明了对于高精度算法,这些算法与代数网络代码所获得的算法等效。我们展示了网络变换矩阵的数值条件与网络变换的性能之间的联系。利用这种方法,我们得到了根据网络参数执行有限精度算术所需的有效位数的上界和下界。我们将其与随机和确定性设计的模拟结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Real" and "Complex" Network Codes: Promises and Challenges
As an alternative to the algebraic network codes prevalent in the literature, we consider Arithmetic Network Codes (henceforth abbreviated as ANCs), i.e., codes in which interior nodes perform finite precision arithmetic over the real or complex fields. We suggest two applications where using such codes can be advantageous. First, we demonstrate that the multi-resolution behaviour of ANCs potentially outperforms that of algebraic network codes. Second, the interfering and fading nature of wireless channels naturally results in complex linear combinations of transmissions, analogous to ANCs. We then characterize the multicast rates achievable by ANCs, and demonstrate that for high precision arithmetic these are equivalent to those obtained by algebraic network codes. We show the connection between the performance of ANCs and the numerical conditioning of network transform matrices. Using this, we obtain upper and lower bounds on the number of significant bits required to perform the finite precision arithmetic in terms of the network parameters. We compare this with simulation results for randomized and deterministic design of ANCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信