基于非线性降维和广义线性模型的多视图人脸识别

B. Raytchev, Ikushi Yoda, K. Sakaue
{"title":"基于非线性降维和广义线性模型的多视图人脸识别","authors":"B. Raytchev, Ikushi Yoda, K. Sakaue","doi":"10.1109/FGR.2006.82","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new general framework for real-time multi-view face recognition in real-world conditions, based on a novel nonlinear dimensionality reduction method IsoScale and generalized linear models (GLMs). Multi-view face sequences of freely moving people are obtained from several stereo cameras installed in an ordinary room, and IsoScale is used to map the faces into a low-dimensional space where the manifold structure of the view-varied faces is preserved, but the face classes are forced to be linearly separable. Then, a GLM-based linear map is learnt between the low-dimensional face representation and the classes, providing posterior probabilities of class membership for the test faces. The benefits of the proposed method are illustrated in a typical HCl application","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models\",\"authors\":\"B. Raytchev, Ikushi Yoda, K. Sakaue\",\"doi\":\"10.1109/FGR.2006.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new general framework for real-time multi-view face recognition in real-world conditions, based on a novel nonlinear dimensionality reduction method IsoScale and generalized linear models (GLMs). Multi-view face sequences of freely moving people are obtained from several stereo cameras installed in an ordinary room, and IsoScale is used to map the faces into a low-dimensional space where the manifold structure of the view-varied faces is preserved, but the face classes are forced to be linearly separable. Then, a GLM-based linear map is learnt between the low-dimensional face representation and the classes, providing posterior probabilities of class membership for the test faces. The benefits of the proposed method are illustrated in a typical HCl application\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的基于非线性降维方法IsoScale和广义线性模型(GLMs)的实时多视图人脸识别通用框架。从安装在普通房间内的几台立体摄像机中获得自由移动的人的多视图人脸序列,并使用IsoScale将人脸映射到低维空间中,在低维空间中保留了视图变化的人脸的流形结构,但人脸类别被迫是线性可分的。然后,在低维人脸表示和类之间学习基于glm的线性映射,为测试人脸提供类隶属度的后验概率。在一个典型的HCl应用中说明了所提出方法的优点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models
In this paper we propose a new general framework for real-time multi-view face recognition in real-world conditions, based on a novel nonlinear dimensionality reduction method IsoScale and generalized linear models (GLMs). Multi-view face sequences of freely moving people are obtained from several stereo cameras installed in an ordinary room, and IsoScale is used to map the faces into a low-dimensional space where the manifold structure of the view-varied faces is preserved, but the face classes are forced to be linearly separable. Then, a GLM-based linear map is learnt between the low-dimensional face representation and the classes, providing posterior probabilities of class membership for the test faces. The benefits of the proposed method are illustrated in a typical HCl application
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信