帧距阵列算法在TIMIT语料库自动语音分割中的参数调整

Y. Seddiq, Y. Alotaibi, S. Selouani
{"title":"帧距阵列算法在TIMIT语料库自动语音分割中的参数调整","authors":"Y. Seddiq, Y. Alotaibi, S. Selouani","doi":"10.1109/EIT.2015.7293346","DOIUrl":null,"url":null,"abstract":"This work is related to unsupervised automatic speech segmentation. An experiment was carried out on the Frame Distance Array (FDA) algorithm with a main goal of the algorithm parameter tune-up. The experiment was carried out by applying the algorithm on TIMIT corpus and by using MFCC as the speech signal features. The parameters tuned up in this work are the frame length, the frame increment, the number of test frames and the test frame step size. The best combination of values was chosen based on the observations on the detection rate, the miss rate and the false boundary rate. The best parameter tune-up found at 23 ms, 1.5 ms, 9 frames and 2 frames for the frame length, the frame increment, the number of test frames and the test frame step size respectively.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"39 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frame distance array algorithm parameter tune-up for TIMIT corpus automatic speech segmentation\",\"authors\":\"Y. Seddiq, Y. Alotaibi, S. Selouani\",\"doi\":\"10.1109/EIT.2015.7293346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is related to unsupervised automatic speech segmentation. An experiment was carried out on the Frame Distance Array (FDA) algorithm with a main goal of the algorithm parameter tune-up. The experiment was carried out by applying the algorithm on TIMIT corpus and by using MFCC as the speech signal features. The parameters tuned up in this work are the frame length, the frame increment, the number of test frames and the test frame step size. The best combination of values was chosen based on the observations on the detection rate, the miss rate and the false boundary rate. The best parameter tune-up found at 23 ms, 1.5 ms, 9 frames and 2 frames for the frame length, the frame increment, the number of test frames and the test frame step size respectively.\",\"PeriodicalId\":415614,\"journal\":{\"name\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"39 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2015.7293346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作与无监督自动语音分割有关。以帧距阵列(FDA)算法的参数调整为主要目标,对其进行了实验研究。将该算法应用于TIMIT语料库,并以MFCC作为语音信号特征进行了实验。在本工作中调整的参数是帧长、帧增量、测试帧数和测试帧步长。通过对检测率、缺失率和假边界率的观察,选择最佳值组合。最佳参数调整分别为23 ms、1.5 ms、9帧和2帧,分别为帧长、帧增量、测试帧数和测试帧步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame distance array algorithm parameter tune-up for TIMIT corpus automatic speech segmentation
This work is related to unsupervised automatic speech segmentation. An experiment was carried out on the Frame Distance Array (FDA) algorithm with a main goal of the algorithm parameter tune-up. The experiment was carried out by applying the algorithm on TIMIT corpus and by using MFCC as the speech signal features. The parameters tuned up in this work are the frame length, the frame increment, the number of test frames and the test frame step size. The best combination of values was chosen based on the observations on the detection rate, the miss rate and the false boundary rate. The best parameter tune-up found at 23 ms, 1.5 ms, 9 frames and 2 frames for the frame length, the frame increment, the number of test frames and the test frame step size respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信