群集的场景重复为必要的匆忙预览

E. Rossi, Sergio Benini, R. Leonardi, Boris Mansencal, J. Benois-Pineau
{"title":"群集的场景重复为必要的匆忙预览","authors":"E. Rossi, Sergio Benini, R. Leonardi, Boris Mansencal, J. Benois-Pineau","doi":"10.1109/WIAMIS.2009.5031476","DOIUrl":null,"url":null,"abstract":"This paper focuses on a specific type of unedited video content, called rushes, which are used for movie editing and usually present a high-level of redundancy. Our goal is to automatically extract a summarized preview, where redundant material is diminished without discarding any important event. To achieve this, rushes content has been first analysed and modeled. Then different clustering techniques on shot key-frames are presented and compared in order to choose the best representative segments to enter the preview. Experiments performed on TRECVID data are evaluated by computing the mutual information between the obtained results and a manually annotated ground-truth.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Clustering of scene repeats for essential rushes preview\",\"authors\":\"E. Rossi, Sergio Benini, R. Leonardi, Boris Mansencal, J. Benois-Pineau\",\"doi\":\"10.1109/WIAMIS.2009.5031476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on a specific type of unedited video content, called rushes, which are used for movie editing and usually present a high-level of redundancy. Our goal is to automatically extract a summarized preview, where redundant material is diminished without discarding any important event. To achieve this, rushes content has been first analysed and modeled. Then different clustering techniques on shot key-frames are presented and compared in order to choose the best representative segments to enter the preview. Experiments performed on TRECVID data are evaluated by computing the mutual information between the obtained results and a manually annotated ground-truth.\",\"PeriodicalId\":233839,\"journal\":{\"name\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2009.5031476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文关注的是一种特殊类型的未编辑视频内容,称为rush,它用于电影编辑,通常呈现出高度冗余。我们的目标是自动提取总结预览,其中冗余的材料被减少而不丢弃任何重要的事件。为了实现这一点,首先分析和建模了rush内容。然后对不同的关键帧聚类技术进行了比较,以选择最具代表性的片段进入预览。在TRECVID数据上进行的实验通过计算获得的结果与人工注释的真值之间的互信息来评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering of scene repeats for essential rushes preview
This paper focuses on a specific type of unedited video content, called rushes, which are used for movie editing and usually present a high-level of redundancy. Our goal is to automatically extract a summarized preview, where redundant material is diminished without discarding any important event. To achieve this, rushes content has been first analysed and modeled. Then different clustering techniques on shot key-frames are presented and compared in order to choose the best representative segments to enter the preview. Experiments performed on TRECVID data are evaluated by computing the mutual information between the obtained results and a manually annotated ground-truth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信