可靠实时系统的任务级概率调度保证——以设计者为中心的方法

Hüseyin Aysan, R. Dobrin, S. Punnekkat
{"title":"可靠实时系统的任务级概率调度保证——以设计者为中心的方法","authors":"Hüseyin Aysan, R. Dobrin, S. Punnekkat","doi":"10.1109/ISORCW.2011.34","DOIUrl":null,"url":null,"abstract":"Dependable real-time systems typically consist of tasks of mixed-criticality levels with associated fault tolerance (FT) requirements and scheduling them in a fault-tolerant manner to efficiently satisfy these requirements is a challenging problem. From the designers' perspective, the most natural way to specify the task criticalities is by expressing the reliability requirements at task level, without having to deal with low level decisions, such as deciding on which FT method to use, where in the system to implement the FT and the amount of resources to be dedicated to the FT mechanism. Hence, it is extremely important to devise methods for translating the high-level requirement specifications for each task into the low-level scheduling decisions needed for the FT mechanism to function efficiently and correctly. In this paper, we focus achieving FT by redundancy in the temporal domain, as it is the commonly preferred method in embedded applications to recover from transient and intermittent errors, mainly due to its relatively low cost and ease of implementation. We propose a method which allows the system designer to specify task-level reliability requirements and provides a priori probabilistic scheduling guarantees for real-time tasks with mixed-criticality levels in the context of preemptive fixed-priority scheduling. We illustrate the method on a running example.","PeriodicalId":126022,"journal":{"name":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Task-Level Probabilistic Scheduling Guarantees for Dependable Real-Time Systems - A Designer Centric Approach\",\"authors\":\"Hüseyin Aysan, R. Dobrin, S. Punnekkat\",\"doi\":\"10.1109/ISORCW.2011.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dependable real-time systems typically consist of tasks of mixed-criticality levels with associated fault tolerance (FT) requirements and scheduling them in a fault-tolerant manner to efficiently satisfy these requirements is a challenging problem. From the designers' perspective, the most natural way to specify the task criticalities is by expressing the reliability requirements at task level, without having to deal with low level decisions, such as deciding on which FT method to use, where in the system to implement the FT and the amount of resources to be dedicated to the FT mechanism. Hence, it is extremely important to devise methods for translating the high-level requirement specifications for each task into the low-level scheduling decisions needed for the FT mechanism to function efficiently and correctly. In this paper, we focus achieving FT by redundancy in the temporal domain, as it is the commonly preferred method in embedded applications to recover from transient and intermittent errors, mainly due to its relatively low cost and ease of implementation. We propose a method which allows the system designer to specify task-level reliability requirements and provides a priori probabilistic scheduling guarantees for real-time tasks with mixed-criticality levels in the context of preemptive fixed-priority scheduling. We illustrate the method on a running example.\",\"PeriodicalId\":126022,\"journal\":{\"name\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORCW.2011.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORCW.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

可靠的实时系统通常由具有相关容错要求的混合临界级别任务组成,并且以容错方式调度它们以有效地满足这些要求是一个具有挑战性的问题。从设计者的角度来看,指定任务关键性的最自然的方法是通过在任务级别表达可靠性要求,而不必处理低级决策,例如决定使用哪种FT方法,在系统的哪个位置实现FT以及用于FT机制的资源数量。因此,设计将每个任务的高级需求规范转换为FT机制有效和正确运行所需的低级调度决策的方法是极其重要的。在本文中,我们的重点是通过时域冗余来实现FT,因为它是嵌入式应用中从瞬态和间歇性错误中恢复的常用方法,主要是由于其相对较低的成本和易于实现。本文提出了一种方法,该方法允许系统设计者指定任务级可靠性要求,并为具有混合临界级别的实时任务在抢占式固定优先级调度环境下提供先验概率调度保证。我们用一个运行的例子来说明这个方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task-Level Probabilistic Scheduling Guarantees for Dependable Real-Time Systems - A Designer Centric Approach
Dependable real-time systems typically consist of tasks of mixed-criticality levels with associated fault tolerance (FT) requirements and scheduling them in a fault-tolerant manner to efficiently satisfy these requirements is a challenging problem. From the designers' perspective, the most natural way to specify the task criticalities is by expressing the reliability requirements at task level, without having to deal with low level decisions, such as deciding on which FT method to use, where in the system to implement the FT and the amount of resources to be dedicated to the FT mechanism. Hence, it is extremely important to devise methods for translating the high-level requirement specifications for each task into the low-level scheduling decisions needed for the FT mechanism to function efficiently and correctly. In this paper, we focus achieving FT by redundancy in the temporal domain, as it is the commonly preferred method in embedded applications to recover from transient and intermittent errors, mainly due to its relatively low cost and ease of implementation. We propose a method which allows the system designer to specify task-level reliability requirements and provides a priori probabilistic scheduling guarantees for real-time tasks with mixed-criticality levels in the context of preemptive fixed-priority scheduling. We illustrate the method on a running example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信