基于区域卷积神经网络的人象冲突管理系统

K. Madheswaran, K. Veerappan, V. Sathiesh Kumar
{"title":"基于区域卷积神经网络的人象冲突管理系统","authors":"K. Madheswaran, K. Veerappan, V. Sathiesh Kumar","doi":"10.1109/ICCIDS.2019.8862006","DOIUrl":null,"url":null,"abstract":"Human elephant conflict occurs due to migration of elephants from their habitat to human living areas in search of food and water. In order to reduce the Human-Elephant Conflict, a real time prototype is built to migrate the elephant to human living areas is minimized by generating honey bee sound and tiger growl sound to which the elephant’s dislikes. Four object detection algorithms such as SSD mobilenet v2 model, SSDlite mobilenet v2 model, SSD inception v2 model, and Fast R-CNN inception v2 are considered. SSDlite mobilenet v2 model produced the best results with precision = 0.854 AP, recall = 0.718 AR, f1-score = 0.780, prediction time = 34.49ms for a frame rate = 31.15fps. Real time implementation is carried out using Raspberry Pi 3 with SSDlite mobilenet v2 architecture.","PeriodicalId":196915,"journal":{"name":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Region Based Convolutional Neural Network for Human-Elephant Conflict Management System\",\"authors\":\"K. Madheswaran, K. Veerappan, V. Sathiesh Kumar\",\"doi\":\"10.1109/ICCIDS.2019.8862006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human elephant conflict occurs due to migration of elephants from their habitat to human living areas in search of food and water. In order to reduce the Human-Elephant Conflict, a real time prototype is built to migrate the elephant to human living areas is minimized by generating honey bee sound and tiger growl sound to which the elephant’s dislikes. Four object detection algorithms such as SSD mobilenet v2 model, SSDlite mobilenet v2 model, SSD inception v2 model, and Fast R-CNN inception v2 are considered. SSDlite mobilenet v2 model produced the best results with precision = 0.854 AP, recall = 0.718 AR, f1-score = 0.780, prediction time = 34.49ms for a frame rate = 31.15fps. Real time implementation is carried out using Raspberry Pi 3 with SSDlite mobilenet v2 architecture.\",\"PeriodicalId\":196915,\"journal\":{\"name\":\"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIDS.2019.8862006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Intelligence in Data Science (ICCIDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIDS.2019.8862006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人象冲突的发生是由于大象为了寻找食物和水而从它们的栖息地迁徙到人类的生活区。为了减少人象冲突,构建了一个实时原型,通过产生大象不喜欢的蜂鸣声和老虎咆哮声,将大象迁移到人类生活区。考虑了SSD mobilenet v2模型、SSDlite mobilenet v2模型、SSD inception v2模型和Fast R-CNN inception v2四种目标检测算法。SSDlite mobilenet v2模型在帧率为31.15fps时,准确率为0.854 AP,召回率为0.718 AR, f1-score为0.780,预测时间为34.49ms。使用Raspberry Pi 3和SSDlite mobilenet v2架构进行实时实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region Based Convolutional Neural Network for Human-Elephant Conflict Management System
Human elephant conflict occurs due to migration of elephants from their habitat to human living areas in search of food and water. In order to reduce the Human-Elephant Conflict, a real time prototype is built to migrate the elephant to human living areas is minimized by generating honey bee sound and tiger growl sound to which the elephant’s dislikes. Four object detection algorithms such as SSD mobilenet v2 model, SSDlite mobilenet v2 model, SSD inception v2 model, and Fast R-CNN inception v2 are considered. SSDlite mobilenet v2 model produced the best results with precision = 0.854 AP, recall = 0.718 AR, f1-score = 0.780, prediction time = 34.49ms for a frame rate = 31.15fps. Real time implementation is carried out using Raspberry Pi 3 with SSDlite mobilenet v2 architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信