在图像库中建模用户主体性

Rosalind W. Picard, T. Minka, M. Szummer
{"title":"在图像库中建模用户主体性","authors":"Rosalind W. Picard, T. Minka, M. Szummer","doi":"10.1109/ICIP.1996.561018","DOIUrl":null,"url":null,"abstract":"In addition to the problem of which image analysis models to use in digital libraries, e.g. wavelet, Wold, color histograms, is the problem of how to combine these models with their different strengths. Most present systems place the burden of combination on the user, e.g. the user specifies 50% texture features, 20% color features, etc. This is a problem since most users do not know how to best pick the settings for the given data and search problem. The paper addresses this problem, describing research in progress for a system that: (1) automatically infers which combination of models best represents the data of interest to the user; and (2) learns continuously during interaction with each user. In particular, these two components-inference and learning-provide a solution that adapts to the subjective and hard to predict behaviors frequently seen when people query or browse image libraries.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Modeling user subjectivity in image libraries\",\"authors\":\"Rosalind W. Picard, T. Minka, M. Szummer\",\"doi\":\"10.1109/ICIP.1996.561018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addition to the problem of which image analysis models to use in digital libraries, e.g. wavelet, Wold, color histograms, is the problem of how to combine these models with their different strengths. Most present systems place the burden of combination on the user, e.g. the user specifies 50% texture features, 20% color features, etc. This is a problem since most users do not know how to best pick the settings for the given data and search problem. The paper addresses this problem, describing research in progress for a system that: (1) automatically infers which combination of models best represents the data of interest to the user; and (2) learns continuously during interaction with each user. In particular, these two components-inference and learning-provide a solution that adapts to the subjective and hard to predict behaviors frequently seen when people query or browse image libraries.\",\"PeriodicalId\":192947,\"journal\":{\"name\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1996.561018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.561018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

除了在数字图书馆中使用哪些图像分析模型(如小波、Wold、颜色直方图)的问题之外,还有如何将这些模型与它们各自的优势结合起来的问题。大多数现有的系统将组合的负担放在用户身上,例如用户指定50%的纹理特征,20%的颜色特征等。这是一个问题,因为大多数用户不知道如何为给定的数据和搜索问题选择最好的设置。本文解决了这个问题,描述了一个系统的研究进展:(1)自动推断哪种模型组合最能代表用户感兴趣的数据;(2)在与每个用户的交互中不断学习。特别是,这两个组件——推理和学习——提供了一种解决方案,可以适应人们在查询或浏览图片库时经常看到的主观且难以预测的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling user subjectivity in image libraries
In addition to the problem of which image analysis models to use in digital libraries, e.g. wavelet, Wold, color histograms, is the problem of how to combine these models with their different strengths. Most present systems place the burden of combination on the user, e.g. the user specifies 50% texture features, 20% color features, etc. This is a problem since most users do not know how to best pick the settings for the given data and search problem. The paper addresses this problem, describing research in progress for a system that: (1) automatically infers which combination of models best represents the data of interest to the user; and (2) learns continuously during interaction with each user. In particular, these two components-inference and learning-provide a solution that adapts to the subjective and hard to predict behaviors frequently seen when people query or browse image libraries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信