随机梯度自适应控制律的参数收敛性

Sheng-Fuu Lin, P. kumar
{"title":"随机梯度自适应控制律的参数收敛性","authors":"Sheng-Fuu Lin, P. kumar","doi":"10.1109/CDC.1988.194513","DOIUrl":null,"url":null,"abstract":"The authors exhibit self-tuning results for the adaptive control law proposed by G.C. Godwin, P.J. Ramadge and P.E. Caines (SIAM J. Control Optim., vol.19, no.6, p.829-53, 1981). They also show how the dimension of the adaptive control law can be reduced in situations where the reference trajectory has a low order of excitation. The results are compared with an adaptive control law proposed by P.R. Kumar and L. Praly (SIAM J. Control Optim., vol.25, no.4, p.1053-71, 1987).<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter convergence in the stochastic gradient adaptive control law\",\"authors\":\"Sheng-Fuu Lin, P. kumar\",\"doi\":\"10.1109/CDC.1988.194513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors exhibit self-tuning results for the adaptive control law proposed by G.C. Godwin, P.J. Ramadge and P.E. Caines (SIAM J. Control Optim., vol.19, no.6, p.829-53, 1981). They also show how the dimension of the adaptive control law can be reduced in situations where the reference trajectory has a low order of excitation. The results are compared with an adaptive control law proposed by P.R. Kumar and L. Praly (SIAM J. Control Optim., vol.25, no.4, p.1053-71, 1987).<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了G.C. Godwin、P.J. Ramadge和P.E. Caines (SIAM J. control Optim)提出的自适应控制律的自整定结果。第19卷,没有。6,第829-53页,1981年)。他们还展示了如何在参考轨迹具有低阶激励的情况下降低自适应控制律的维数。结果与P.R. Kumar和L. Praly (SIAM J. control Optim)提出的自适应控制律进行了比较。第25卷,no。4, p.1053-71, 1987)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter convergence in the stochastic gradient adaptive control law
The authors exhibit self-tuning results for the adaptive control law proposed by G.C. Godwin, P.J. Ramadge and P.E. Caines (SIAM J. Control Optim., vol.19, no.6, p.829-53, 1981). They also show how the dimension of the adaptive control law can be reduced in situations where the reference trajectory has a low order of excitation. The results are compared with an adaptive control law proposed by P.R. Kumar and L. Praly (SIAM J. Control Optim., vol.25, no.4, p.1053-71, 1987).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信