迭代最接近谱核映射

A. Shtern, R. Kimmel
{"title":"迭代最接近谱核映射","authors":"A. Shtern, R. Kimmel","doi":"10.1109/3DV.2014.24","DOIUrl":null,"url":null,"abstract":"An important operation in geometry processing is finding the correspondences between pairs of shapes. Measures of dissimilarity between surfaces, has been found to be highly useful for nonrigid shape comparison. Here, we analyze the applicability of the spectral kernel distance, for solving the shape matching problem. To align the spectral kernels, we introduce the iterative closest spectral kernel maps (ICSKM) algorithm. The ICSKM algorithm farther extends the iterative closest point algorithm to the class of deformable shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Iterative Closest Spectral Kernel Maps\",\"authors\":\"A. Shtern, R. Kimmel\",\"doi\":\"10.1109/3DV.2014.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important operation in geometry processing is finding the correspondences between pairs of shapes. Measures of dissimilarity between surfaces, has been found to be highly useful for nonrigid shape comparison. Here, we analyze the applicability of the spectral kernel distance, for solving the shape matching problem. To align the spectral kernels, we introduce the iterative closest spectral kernel maps (ICSKM) algorithm. The ICSKM algorithm farther extends the iterative closest point algorithm to the class of deformable shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

几何处理中的一项重要操作是找出图形对之间的对应关系。表面之间的不相似性的措施,已被发现是非刚性形状比较非常有用。在此,我们分析了谱核距离在解决形状匹配问题中的适用性。为了使谱核对齐,我们引入了迭代最接近谱核映射(ICSKM)算法。ICSKM算法将迭代最近点算法进一步扩展到可变形形状类。所提出的方法在应用于TOSCA和SCAPE基准的普林斯顿等距形状匹配协议上获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative Closest Spectral Kernel Maps
An important operation in geometry processing is finding the correspondences between pairs of shapes. Measures of dissimilarity between surfaces, has been found to be highly useful for nonrigid shape comparison. Here, we analyze the applicability of the spectral kernel distance, for solving the shape matching problem. To align the spectral kernels, we introduce the iterative closest spectral kernel maps (ICSKM) algorithm. The ICSKM algorithm farther extends the iterative closest point algorithm to the class of deformable shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信