C. B. Martin, Camille Simon Chane, C. Clouchoux, A. Histace
{"title":"基于有目的噪声注入的脑类器官图像AAEGAN优化","authors":"C. B. Martin, Camille Simon Chane, C. Clouchoux, A. Histace","doi":"10.1109/IPTA54936.2022.9784149","DOIUrl":null,"url":null,"abstract":"Brain organoids are three-dimensional tissues gener-ated in vitro from pluripotent stem cells and replicating the early development of Human brain. To implement, test and compare methods to follow their growth on microscopic images, a large dataset not always available is required with a trusted ground truth when developing automated Machine Learning solutions. Recently, optimized Generative Adversarial Networks prove to generate only a similar object content but not a background specific to the real acquisition modality. In this work, a small database of brain organoid bright field images, characterized by a shot noise background, is extended using the already validated AAEGAN architecture, and specific noise or a mixture noise injected in the generator. We hypothesize this noise injection could help to generate an homogeneous and similar bright-field background. To validate or invalidate our generated images we use metric calculation, and a dimensional reduction on features on original and generated images. Our result suggest that noise injection can modulate the generated image backgrounds in order to produce a more similar content as produced in the microscopic reality. A validation of these images by biological experts could augment the original dataset and allow their analysis by Deep-based solutions.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images\",\"authors\":\"C. B. Martin, Camille Simon Chane, C. Clouchoux, A. Histace\",\"doi\":\"10.1109/IPTA54936.2022.9784149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain organoids are three-dimensional tissues gener-ated in vitro from pluripotent stem cells and replicating the early development of Human brain. To implement, test and compare methods to follow their growth on microscopic images, a large dataset not always available is required with a trusted ground truth when developing automated Machine Learning solutions. Recently, optimized Generative Adversarial Networks prove to generate only a similar object content but not a background specific to the real acquisition modality. In this work, a small database of brain organoid bright field images, characterized by a shot noise background, is extended using the already validated AAEGAN architecture, and specific noise or a mixture noise injected in the generator. We hypothesize this noise injection could help to generate an homogeneous and similar bright-field background. To validate or invalidate our generated images we use metric calculation, and a dimensional reduction on features on original and generated images. Our result suggest that noise injection can modulate the generated image backgrounds in order to produce a more similar content as produced in the microscopic reality. A validation of these images by biological experts could augment the original dataset and allow their analysis by Deep-based solutions.\",\"PeriodicalId\":381729,\"journal\":{\"name\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA54936.2022.9784149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images
Brain organoids are three-dimensional tissues gener-ated in vitro from pluripotent stem cells and replicating the early development of Human brain. To implement, test and compare methods to follow their growth on microscopic images, a large dataset not always available is required with a trusted ground truth when developing automated Machine Learning solutions. Recently, optimized Generative Adversarial Networks prove to generate only a similar object content but not a background specific to the real acquisition modality. In this work, a small database of brain organoid bright field images, characterized by a shot noise background, is extended using the already validated AAEGAN architecture, and specific noise or a mixture noise injected in the generator. We hypothesize this noise injection could help to generate an homogeneous and similar bright-field background. To validate or invalidate our generated images we use metric calculation, and a dimensional reduction on features on original and generated images. Our result suggest that noise injection can modulate the generated image backgrounds in order to produce a more similar content as produced in the microscopic reality. A validation of these images by biological experts could augment the original dataset and allow their analysis by Deep-based solutions.