基于BERT的中文电子商务评论情感分析

Song Xie, Jingjing Cao, Zhou Wu, Kai Liu, Xiaohui Tao, Haoran Xie
{"title":"基于BERT的中文电子商务评论情感分析","authors":"Song Xie, Jingjing Cao, Zhou Wu, Kai Liu, Xiaohui Tao, Haoran Xie","doi":"10.1109/INDIN45582.2020.9442190","DOIUrl":null,"url":null,"abstract":"The popularity of the Internet has brought profound influence to electronic commerce. A kind of review-oriented consumption mode is gradually expanding in the market and consumers will refer to the reviews provided by consumers who bought the product in the past. How to accurately analyze users' sentiments from massive data of e-commerce reviews has become one of the key issues for e-commerce platforms. Current standard sentiment analysis classifies overall sentiment of e-commerce reviews without an extended description of the entity. We set up an optimized Aspect-based sentiment analysis (ABSA) that includes four elements: aspect, category, polarity, and opinion. Aiming at the above problems, this paper proposes a Chinese e-commerce reviews sentiment analysis algorithm based on BERT. By using pre-training model, we use the BIO(B-begin,I-inside,O-outside) data labeling pattern to label entities and study sentiment analysis by the annotation data. Experimental results on the Taobao cosmetics review datasets show that compared with the ordinary deep learning methods, our approach in the accuracy rate and the F1 score has significant improvement.","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Sentiment Analysis of Chinese E-commerce Reviews Based on BERT\",\"authors\":\"Song Xie, Jingjing Cao, Zhou Wu, Kai Liu, Xiaohui Tao, Haoran Xie\",\"doi\":\"10.1109/INDIN45582.2020.9442190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of the Internet has brought profound influence to electronic commerce. A kind of review-oriented consumption mode is gradually expanding in the market and consumers will refer to the reviews provided by consumers who bought the product in the past. How to accurately analyze users' sentiments from massive data of e-commerce reviews has become one of the key issues for e-commerce platforms. Current standard sentiment analysis classifies overall sentiment of e-commerce reviews without an extended description of the entity. We set up an optimized Aspect-based sentiment analysis (ABSA) that includes four elements: aspect, category, polarity, and opinion. Aiming at the above problems, this paper proposes a Chinese e-commerce reviews sentiment analysis algorithm based on BERT. By using pre-training model, we use the BIO(B-begin,I-inside,O-outside) data labeling pattern to label entities and study sentiment analysis by the annotation data. Experimental results on the Taobao cosmetics review datasets show that compared with the ordinary deep learning methods, our approach in the accuracy rate and the F1 score has significant improvement.\",\"PeriodicalId\":185948,\"journal\":{\"name\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45582.2020.9442190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

互联网的普及给电子商务带来了深远的影响。一种以评论为导向的消费模式在市场上逐渐扩大,消费者会参考过去购买过该产品的消费者提供的评论。如何从海量的电商评论数据中准确分析用户情绪,成为电商平台面临的关键问题之一。目前的标准情感分析对电子商务评论的整体情感进行分类,而没有对实体进行扩展描述。我们建立了一个优化的基于方面的情感分析(ABSA),包括四个要素:方面,类别,极性和意见。针对上述问题,本文提出了一种基于BERT的中文电子商务评论情感分析算法。通过预训练模型,采用BIO(B-begin,I-inside,O-outside)数据标注模式对实体进行标注,并对标注数据进行情感分析研究。在淘宝化妆品评论数据集上的实验结果表明,与普通的深度学习方法相比,我们的方法在准确率和F1分数上都有明显的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis of Chinese E-commerce Reviews Based on BERT
The popularity of the Internet has brought profound influence to electronic commerce. A kind of review-oriented consumption mode is gradually expanding in the market and consumers will refer to the reviews provided by consumers who bought the product in the past. How to accurately analyze users' sentiments from massive data of e-commerce reviews has become one of the key issues for e-commerce platforms. Current standard sentiment analysis classifies overall sentiment of e-commerce reviews without an extended description of the entity. We set up an optimized Aspect-based sentiment analysis (ABSA) that includes four elements: aspect, category, polarity, and opinion. Aiming at the above problems, this paper proposes a Chinese e-commerce reviews sentiment analysis algorithm based on BERT. By using pre-training model, we use the BIO(B-begin,I-inside,O-outside) data labeling pattern to label entities and study sentiment analysis by the annotation data. Experimental results on the Taobao cosmetics review datasets show that compared with the ordinary deep learning methods, our approach in the accuracy rate and the F1 score has significant improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信