自适应数字预失真系统的设计与实现框架

Lin Li, Peter Deaville, A. Sapio, L. Anttila, M. Valkama, M. Wolf, S. Bhattacharyya
{"title":"自适应数字预失真系统的设计与实现框架","authors":"Lin Li, Peter Deaville, A. Sapio, L. Anttila, M. Valkama, M. Wolf, S. Bhattacharyya","doi":"10.1109/AICAS.2019.8771476","DOIUrl":null,"url":null,"abstract":"Digital predistortion (DPD) has important applications in wireless communication for smart systems, such as, for example, in Internet of Things (IoT) applications for smart cities. DPD is used in wireless communication transmitters to counteract distortions that arise from nonlinearities, such as those related to amplifier characteristics and local oscillator leakage. In this paper, we propose an algorithm-architecture-integrated framework for design and implementation of adaptive DPD systems. The proposed framework provides energy-efficient, real-time DPD performance, and enables efficient reconfiguration of DPD architectures so that communication can be dynamically optimized based on time-varying communication requirements. Our adaptive DPD design framework applies Markov Decision Processes (MDPs) in novel ways to generate optimized runtime control policies for DPD systems. We present a GPU-based adaptive DPD system that is derived using our design framework, and demonstrate its efficiency through extensive experiments.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Framework for Design and Implementation of Adaptive Digital Predistortion Systems\",\"authors\":\"Lin Li, Peter Deaville, A. Sapio, L. Anttila, M. Valkama, M. Wolf, S. Bhattacharyya\",\"doi\":\"10.1109/AICAS.2019.8771476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital predistortion (DPD) has important applications in wireless communication for smart systems, such as, for example, in Internet of Things (IoT) applications for smart cities. DPD is used in wireless communication transmitters to counteract distortions that arise from nonlinearities, such as those related to amplifier characteristics and local oscillator leakage. In this paper, we propose an algorithm-architecture-integrated framework for design and implementation of adaptive DPD systems. The proposed framework provides energy-efficient, real-time DPD performance, and enables efficient reconfiguration of DPD architectures so that communication can be dynamically optimized based on time-varying communication requirements. Our adaptive DPD design framework applies Markov Decision Processes (MDPs) in novel ways to generate optimized runtime control policies for DPD systems. We present a GPU-based adaptive DPD system that is derived using our design framework, and demonstrate its efficiency through extensive experiments.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数字预失真(DPD)在智能系统的无线通信中具有重要应用,例如智能城市的物联网(IoT)应用。DPD用于无线通信发射机中,以抵消非线性引起的失真,例如与放大器特性和本振泄漏有关的失真。在本文中,我们提出了一种算法-架构集成的框架,用于自适应DPD系统的设计和实现。该框架提供了节能、实时的DPD性能,并能够有效地重新配置DPD架构,从而可以根据时变通信需求动态优化通信。我们的自适应DPD设计框架以新颖的方式应用马尔可夫决策过程(mdp)来为DPD系统生成优化的运行时控制策略。我们提出了一个基于gpu的自适应DPD系统,该系统是使用我们的设计框架衍生的,并通过大量的实验证明了它的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Design and Implementation of Adaptive Digital Predistortion Systems
Digital predistortion (DPD) has important applications in wireless communication for smart systems, such as, for example, in Internet of Things (IoT) applications for smart cities. DPD is used in wireless communication transmitters to counteract distortions that arise from nonlinearities, such as those related to amplifier characteristics and local oscillator leakage. In this paper, we propose an algorithm-architecture-integrated framework for design and implementation of adaptive DPD systems. The proposed framework provides energy-efficient, real-time DPD performance, and enables efficient reconfiguration of DPD architectures so that communication can be dynamically optimized based on time-varying communication requirements. Our adaptive DPD design framework applies Markov Decision Processes (MDPs) in novel ways to generate optimized runtime control policies for DPD systems. We present a GPU-based adaptive DPD system that is derived using our design framework, and demonstrate its efficiency through extensive experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信