网络能量驱动无线传感器网络

S. De, S. Chatterjee
{"title":"网络能量驱动无线传感器网络","authors":"S. De, S. Chatterjee","doi":"10.4018/978-1-61350-092-7.CH008","DOIUrl":null,"url":null,"abstract":"Scarcity of energy in tiny battery-powered wireless sensor nodes have led to a tremendous amount of research thrust at all protocol levels in wireless networks. Despite efficient design of the underlying communication protocols, limited battery energy primarily restricts the usage of nodes and hence the lifetime of the network. As a result, although there has been a lot of promise of pervasive networking via sensors, limited energy of the nodes has been a major bottleneck to deployment feasibility and cost of such a network. With this view, alongside many innovative network communication protocol research to increase nodal as well as network lifetime, there have been significant ongoing efforts on how to impart energy to the depleted batteries on-line. In this chapter, we propose to apply the lessons learnt from our surrounding nature and practices of the living world to realize network energy operated field sensors. We show that, although the regular communicating nodes may not benefit from network energy harvesting, by modifying the carrier sensing principle in a hierarchical network setting, the low power consuming field nodes can extend their lifetimes, or even the scavenged RF energy can be sufficient for the uninterrupted processing and transmission activities of the field nodes.","PeriodicalId":222328,"journal":{"name":"Biologically Inspired Networking and Sensing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Network Energy Driven Wireless Sensor Networks\",\"authors\":\"S. De, S. Chatterjee\",\"doi\":\"10.4018/978-1-61350-092-7.CH008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scarcity of energy in tiny battery-powered wireless sensor nodes have led to a tremendous amount of research thrust at all protocol levels in wireless networks. Despite efficient design of the underlying communication protocols, limited battery energy primarily restricts the usage of nodes and hence the lifetime of the network. As a result, although there has been a lot of promise of pervasive networking via sensors, limited energy of the nodes has been a major bottleneck to deployment feasibility and cost of such a network. With this view, alongside many innovative network communication protocol research to increase nodal as well as network lifetime, there have been significant ongoing efforts on how to impart energy to the depleted batteries on-line. In this chapter, we propose to apply the lessons learnt from our surrounding nature and practices of the living world to realize network energy operated field sensors. We show that, although the regular communicating nodes may not benefit from network energy harvesting, by modifying the carrier sensing principle in a hierarchical network setting, the low power consuming field nodes can extend their lifetimes, or even the scavenged RF energy can be sufficient for the uninterrupted processing and transmission activities of the field nodes.\",\"PeriodicalId\":222328,\"journal\":{\"name\":\"Biologically Inspired Networking and Sensing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologically Inspired Networking and Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-61350-092-7.CH008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologically Inspired Networking and Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61350-092-7.CH008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

微小的电池供电的无线传感器节点的能量短缺导致了无线网络中所有协议级别的大量研究推力。尽管底层通信协议设计高效,但有限的电池能量主要限制了节点的使用,从而限制了网络的寿命。因此,尽管通过传感器实现无处不在的网络有很多希望,但节点有限的能量一直是这种网络部署可行性和成本的主要瓶颈。有了这个观点,随着许多创新的网络通信协议的研究,以增加节点和网络的寿命,有一个重要的正在进行的努力,如何将能量传递给耗尽的电池在线。在本章中,我们建议应用从我们周围的自然和生活世界的实践中吸取的教训来实现网络能量操作的场传感器。我们表明,尽管常规通信节点可能不会从网络能量收集中受益,但通过修改分层网络设置中的载波传感原理,低功耗的现场节点可以延长其寿命,甚至清除的射频能量足以用于现场节点的不间断处理和传输活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Energy Driven Wireless Sensor Networks
Scarcity of energy in tiny battery-powered wireless sensor nodes have led to a tremendous amount of research thrust at all protocol levels in wireless networks. Despite efficient design of the underlying communication protocols, limited battery energy primarily restricts the usage of nodes and hence the lifetime of the network. As a result, although there has been a lot of promise of pervasive networking via sensors, limited energy of the nodes has been a major bottleneck to deployment feasibility and cost of such a network. With this view, alongside many innovative network communication protocol research to increase nodal as well as network lifetime, there have been significant ongoing efforts on how to impart energy to the depleted batteries on-line. In this chapter, we propose to apply the lessons learnt from our surrounding nature and practices of the living world to realize network energy operated field sensors. We show that, although the regular communicating nodes may not benefit from network energy harvesting, by modifying the carrier sensing principle in a hierarchical network setting, the low power consuming field nodes can extend their lifetimes, or even the scavenged RF energy can be sufficient for the uninterrupted processing and transmission activities of the field nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信