基于三维概率重建的视觉跟踪

G. Simas, Rodrigo de Bem, L. Novelo, Guilherme P. Fickel, S. Botelho
{"title":"基于三维概率重建的视觉跟踪","authors":"G. Simas, Rodrigo de Bem, L. Novelo, Guilherme P. Fickel, S. Botelho","doi":"10.1109/ECBS.2010.53","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to the 3D visual tracking problem into multi-camera environments. This proposal executes the markerless visual tracking observing the environment through a model based in a volumetric reconstruction technique, called 3D Probabilistic Occupancy Grids, which is still seldom used for this purpose. The target is tracked by the use of Expectation-Maximization algorithm with an object representation model constructed with Gaussians blobs representing the object body parts.","PeriodicalId":356361,"journal":{"name":"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Tracking Based on 3D Probabilistic Reconstruction\",\"authors\":\"G. Simas, Rodrigo de Bem, L. Novelo, Guilherme P. Fickel, S. Botelho\",\"doi\":\"10.1109/ECBS.2010.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to the 3D visual tracking problem into multi-camera environments. This proposal executes the markerless visual tracking observing the environment through a model based in a volumetric reconstruction technique, called 3D Probabilistic Occupancy Grids, which is still seldom used for this purpose. The target is tracked by the use of Expectation-Maximization algorithm with an object representation model constructed with Gaussians blobs representing the object body parts.\",\"PeriodicalId\":356361,\"journal\":{\"name\":\"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECBS.2010.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 17th IEEE International Conference and Workshops on Engineering of Computer Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECBS.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种多摄像机环境下三维视觉跟踪问题的解决方法。该方案通过基于三维概率占用网格(3D Probabilistic Occupancy Grids)体积重建技术的模型来实现对环境的无标记视觉跟踪。利用期望最大化算法对目标进行跟踪,并建立了以高斯斑点表示目标体部分的对象表示模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Tracking Based on 3D Probabilistic Reconstruction
This paper presents an approach to the 3D visual tracking problem into multi-camera environments. This proposal executes the markerless visual tracking observing the environment through a model based in a volumetric reconstruction technique, called 3D Probabilistic Occupancy Grids, which is still seldom used for this purpose. The target is tracked by the use of Expectation-Maximization algorithm with an object representation model constructed with Gaussians blobs representing the object body parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信