具有概率时间规范的控制即兴

Ilge Akkaya, Daniel J. Fremont, Rafael Valle, Alexandre Donzé, Edward A. Lee, S. Seshia
{"title":"具有概率时间规范的控制即兴","authors":"Ilge Akkaya, Daniel J. Fremont, Rafael Valle, Alexandre Donzé, Edward A. Lee, S. Seshia","doi":"10.1109/IoTDI.2015.33","DOIUrl":null,"url":null,"abstract":"We consider the problem of generating randomized control sequences for complex networked systems typically actuated by human agents. Our approach leverages a concept known as control improvisation, which is based on a combination of data-driven learning and controller synthesis from formal specifications. We learn from existing data a generative model (for instance, an explicit-duration hidden Markov model, or EDHMM) and then supervise this model in order to guarantee that the generated sequences satisfy some desirable specifications given in Probabilistic Computation Tree Logic (PCTL). We present an implementation of our approach and apply it to the problem of mimicking the use of lighting appliances in a residential unit, with potential applications to home security and resource management. We present experimental results showing that our approach produces realistic control sequences, similar to recorded data based on human actuation, while satisfying suitable formal requirements.","PeriodicalId":135674,"journal":{"name":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Control Improvisation with Probabilistic Temporal Specifications\",\"authors\":\"Ilge Akkaya, Daniel J. Fremont, Rafael Valle, Alexandre Donzé, Edward A. Lee, S. Seshia\",\"doi\":\"10.1109/IoTDI.2015.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of generating randomized control sequences for complex networked systems typically actuated by human agents. Our approach leverages a concept known as control improvisation, which is based on a combination of data-driven learning and controller synthesis from formal specifications. We learn from existing data a generative model (for instance, an explicit-duration hidden Markov model, or EDHMM) and then supervise this model in order to guarantee that the generated sequences satisfy some desirable specifications given in Probabilistic Computation Tree Logic (PCTL). We present an implementation of our approach and apply it to the problem of mimicking the use of lighting appliances in a residential unit, with potential applications to home security and resource management. We present experimental results showing that our approach produces realistic control sequences, similar to recorded data based on human actuation, while satisfying suitable formal requirements.\",\"PeriodicalId\":135674,\"journal\":{\"name\":\"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IoTDI.2015.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTDI.2015.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们考虑的问题是生成随机控制序列的复杂网络系统通常是由人驱动的。我们的方法利用了一种称为控制即兴的概念,它基于数据驱动学习和来自正式规范的控制器合成的结合。我们从现有数据中学习生成模型(例如,显式持续时间隐马尔可夫模型或EDHMM),然后监督该模型,以保证生成的序列满足概率计算树逻辑(PCTL)中给出的一些期望规范。我们提出了我们的方法的实施,并将其应用于模拟住宅单元中照明设备的使用问题,并具有潜在的应用于家庭安全和资源管理。我们提出的实验结果表明,我们的方法产生了真实的控制序列,类似于基于人类驱动的记录数据,同时满足适当的形式要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control Improvisation with Probabilistic Temporal Specifications
We consider the problem of generating randomized control sequences for complex networked systems typically actuated by human agents. Our approach leverages a concept known as control improvisation, which is based on a combination of data-driven learning and controller synthesis from formal specifications. We learn from existing data a generative model (for instance, an explicit-duration hidden Markov model, or EDHMM) and then supervise this model in order to guarantee that the generated sequences satisfy some desirable specifications given in Probabilistic Computation Tree Logic (PCTL). We present an implementation of our approach and apply it to the problem of mimicking the use of lighting appliances in a residential unit, with potential applications to home security and resource management. We present experimental results showing that our approach produces realistic control sequences, similar to recorded data based on human actuation, while satisfying suitable formal requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信