遥感自适应图像配准

I. Gokcen, I.H. Pineda, B. Buckles
{"title":"遥感自适应图像配准","authors":"I. Gokcen, I.H. Pineda, B. Buckles","doi":"10.1109/RAST.2003.1303385","DOIUrl":null,"url":null,"abstract":"Remote sensing applications require image registration as a pre-processing step before further progress. In this paper, we present a rigid search-space reducing, feature-based adaptive image registration scheme to put images in correspondence, without establishing explicit point correspondences. Our method estimates the registration parameters using a feature set, which is based on Principal Component Analysis (PCA). A unique aspect of the method is the incorporation of a learning process to learn the parameters from a training set of images, which is constructed incrementally. We illustrate the robustness of this approach using a number of remote sensing images and a variety of rotation angles. Mapping between the features and the transformation parameters is via a nearest-mean matching scheme. Hence correct orientation is determined within a predetermined error.","PeriodicalId":272869,"journal":{"name":"International Conference on Recent Advances in Space Technologies, 2003. RAST '03. Proceedings of","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive image registration for remote sensing\",\"authors\":\"I. Gokcen, I.H. Pineda, B. Buckles\",\"doi\":\"10.1109/RAST.2003.1303385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing applications require image registration as a pre-processing step before further progress. In this paper, we present a rigid search-space reducing, feature-based adaptive image registration scheme to put images in correspondence, without establishing explicit point correspondences. Our method estimates the registration parameters using a feature set, which is based on Principal Component Analysis (PCA). A unique aspect of the method is the incorporation of a learning process to learn the parameters from a training set of images, which is constructed incrementally. We illustrate the robustness of this approach using a number of remote sensing images and a variety of rotation angles. Mapping between the features and the transformation parameters is via a nearest-mean matching scheme. Hence correct orientation is determined within a predetermined error.\",\"PeriodicalId\":272869,\"journal\":{\"name\":\"International Conference on Recent Advances in Space Technologies, 2003. RAST '03. Proceedings of\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Recent Advances in Space Technologies, 2003. RAST '03. Proceedings of\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAST.2003.1303385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Recent Advances in Space Technologies, 2003. RAST '03. Proceedings of","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAST.2003.1303385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遥感应用需要图像配准作为进一步发展的预处理步骤。在本文中,我们提出了一种严格的搜索空间缩减,基于特征的自适应图像配准方案,使图像保持对应,而不建立明确的点对应。我们的方法使用基于主成分分析(PCA)的特征集估计配准参数。该方法的一个独特之处在于,它结合了一个学习过程,从逐步构建的图像训练集中学习参数。我们使用许多遥感图像和各种旋转角度来说明这种方法的鲁棒性。特征与转换参数之间的映射是通过最接近均值匹配方案实现的。因此,正确的方向是在预定的误差范围内确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive image registration for remote sensing
Remote sensing applications require image registration as a pre-processing step before further progress. In this paper, we present a rigid search-space reducing, feature-based adaptive image registration scheme to put images in correspondence, without establishing explicit point correspondences. Our method estimates the registration parameters using a feature set, which is based on Principal Component Analysis (PCA). A unique aspect of the method is the incorporation of a learning process to learn the parameters from a training set of images, which is constructed incrementally. We illustrate the robustness of this approach using a number of remote sensing images and a variety of rotation angles. Mapping between the features and the transformation parameters is via a nearest-mean matching scheme. Hence correct orientation is determined within a predetermined error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信