{"title":"基于草图的图像检索四重网络","authors":"Omar Seddati, S. Dupont, S. Mahmoudi","doi":"10.1145/3078971.3078985","DOIUrl":null,"url":null,"abstract":"Freehand sketches are a simple and powerful tool for communication. They are easily recognized across cultures and suitable for various applications. In this paper, we use deep convolutional neural networks (ConvNets) to address sketch-based image retrieval (SBIR). We first train our ConvNets on sketch and image object recognition in a large scale benchmark for SBIR (the sketchy database). We then conduct a comprehensive study of ConvNets features for SBIR, using a kNN similarity search paradigm in the ConvNet feature space. In contrast to recent SBIR works, we propose a new architecture the quadruplet networks which enhance ConvNet features for SBIR. This new architecture enables ConvNets to extract more robust global and local features. We evaluate our approach on three large scale datasets. Our quadruplet networks outperform previous state-of-the-art on two of them by a significant margin and gives competitive results on the third. Our system achieves a recall of 42.16% (at k=1) for the sketchy database (more than 5% improvement), a Kendal score of 43.28Τb on the TU-Berlin SBIR benchmark (close to 6Τb improvement) and a mean average precision (MAP) of 32.16% on Flickr15k (a category level SBIR benchmark).","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Quadruplet Networks for Sketch-Based Image Retrieval\",\"authors\":\"Omar Seddati, S. Dupont, S. Mahmoudi\",\"doi\":\"10.1145/3078971.3078985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freehand sketches are a simple and powerful tool for communication. They are easily recognized across cultures and suitable for various applications. In this paper, we use deep convolutional neural networks (ConvNets) to address sketch-based image retrieval (SBIR). We first train our ConvNets on sketch and image object recognition in a large scale benchmark for SBIR (the sketchy database). We then conduct a comprehensive study of ConvNets features for SBIR, using a kNN similarity search paradigm in the ConvNet feature space. In contrast to recent SBIR works, we propose a new architecture the quadruplet networks which enhance ConvNet features for SBIR. This new architecture enables ConvNets to extract more robust global and local features. We evaluate our approach on three large scale datasets. Our quadruplet networks outperform previous state-of-the-art on two of them by a significant margin and gives competitive results on the third. Our system achieves a recall of 42.16% (at k=1) for the sketchy database (more than 5% improvement), a Kendal score of 43.28Τb on the TU-Berlin SBIR benchmark (close to 6Τb improvement) and a mean average precision (MAP) of 32.16% on Flickr15k (a category level SBIR benchmark).\",\"PeriodicalId\":403556,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078971.3078985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3078985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quadruplet Networks for Sketch-Based Image Retrieval
Freehand sketches are a simple and powerful tool for communication. They are easily recognized across cultures and suitable for various applications. In this paper, we use deep convolutional neural networks (ConvNets) to address sketch-based image retrieval (SBIR). We first train our ConvNets on sketch and image object recognition in a large scale benchmark for SBIR (the sketchy database). We then conduct a comprehensive study of ConvNets features for SBIR, using a kNN similarity search paradigm in the ConvNet feature space. In contrast to recent SBIR works, we propose a new architecture the quadruplet networks which enhance ConvNet features for SBIR. This new architecture enables ConvNets to extract more robust global and local features. We evaluate our approach on three large scale datasets. Our quadruplet networks outperform previous state-of-the-art on two of them by a significant margin and gives competitive results on the third. Our system achieves a recall of 42.16% (at k=1) for the sketchy database (more than 5% improvement), a Kendal score of 43.28Τb on the TU-Berlin SBIR benchmark (close to 6Τb improvement) and a mean average precision (MAP) of 32.16% on Flickr15k (a category level SBIR benchmark).