2:一种基于功能推理的模糊计算神经模糊架构

A. Vasilakos, K. Zikidis
{"title":"2:一种基于功能推理的模糊计算神经模糊架构","authors":"A. Vasilakos, K. Zikidis","doi":"10.1109/FUZZY.1995.409756","DOIUrl":null,"url":null,"abstract":"The proposed architecture, ASAFES2, is a function approximator which combines the functional reasoning or Sugeno's fuzzy reasoning method with stochastic reinforcement learning-a class of quite powerful neural network training algorithms. It is a simple and versatile mathematical tool for fuzzy computing, featuring smooth and quick convergence and ease of use. The main ideas are the fuzzy partitioning of the input space into fuzzy subspaces (each corresponding to a possible fuzzy rule), and the use of a separate, stochastic reinforcement learning neural unit (ANASA II) for every fuzzy subspace, in order to calculate the optimum consequence parameters. Some preliminary results are presented, proving ASAFES2 superior over backpropagation. A new, and \"flexible\" membership function is also proposed.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"ASAFES.2: a novel, neuro-fuzzy architecture for fuzzy computing based on functional reasoning\",\"authors\":\"A. Vasilakos, K. Zikidis\",\"doi\":\"10.1109/FUZZY.1995.409756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed architecture, ASAFES2, is a function approximator which combines the functional reasoning or Sugeno's fuzzy reasoning method with stochastic reinforcement learning-a class of quite powerful neural network training algorithms. It is a simple and versatile mathematical tool for fuzzy computing, featuring smooth and quick convergence and ease of use. The main ideas are the fuzzy partitioning of the input space into fuzzy subspaces (each corresponding to a possible fuzzy rule), and the use of a separate, stochastic reinforcement learning neural unit (ANASA II) for every fuzzy subspace, in order to calculate the optimum consequence parameters. Some preliminary results are presented, proving ASAFES2 superior over backpropagation. A new, and \\\"flexible\\\" membership function is also proposed.<<ETX>>\",\"PeriodicalId\":150477,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1995.409756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

所提出的架构ASAFES2是一个函数逼近器,它将功能推理或Sugeno的模糊推理方法与随机强化学习(一类非常强大的神经网络训练算法)相结合。它是一种简单而通用的模糊计算数学工具,具有平滑快速收敛和易于使用的特点。其主要思想是将输入空间模糊划分为模糊子空间(每个子空间对应一个可能的模糊规则),并为每个模糊子空间使用单独的随机强化学习神经单元(ANASA II),以计算最佳结果参数。给出了一些初步结果,证明ASAFES2优于反向传播。还提出了一种新的、“灵活的”隶属函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASAFES.2: a novel, neuro-fuzzy architecture for fuzzy computing based on functional reasoning
The proposed architecture, ASAFES2, is a function approximator which combines the functional reasoning or Sugeno's fuzzy reasoning method with stochastic reinforcement learning-a class of quite powerful neural network training algorithms. It is a simple and versatile mathematical tool for fuzzy computing, featuring smooth and quick convergence and ease of use. The main ideas are the fuzzy partitioning of the input space into fuzzy subspaces (each corresponding to a possible fuzzy rule), and the use of a separate, stochastic reinforcement learning neural unit (ANASA II) for every fuzzy subspace, in order to calculate the optimum consequence parameters. Some preliminary results are presented, proving ASAFES2 superior over backpropagation. A new, and "flexible" membership function is also proposed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信