A. Mastropaolo, Emad Aghajani, L. Pascarella, G. Bavota
{"title":"代码注释补全的实证研究","authors":"A. Mastropaolo, Emad Aghajani, L. Pascarella, G. Bavota","doi":"10.26226/morressier.613b5418842293c031b5b5da","DOIUrl":null,"url":null,"abstract":"Code comments play a prominent role in program comprehension activities. However, source code is not always documented and code and comments not always co-evolve. To deal with these issues, researchers have proposed techniques to automatically generate comments documenting a given code at hand. The most recent works in the area applied deep learning (DL) techniques to support such a task. Despite the achieved advances, the empirical evaluations of these approaches show that they are still far from a performance level that would make them valuable for developers. We tackle a simpler and related problem: Code comment completion. Instead of generating a comment for a given code from scratch, we investigate the extent to which state-of-the-art techniques can help developers in writing comments faster. We present a large-scale study in which we empirically assess how a simple n-gram model and the recently proposed Text-To-Text Transfer Transformer (T5) architecture can perform in autocompleting a code comment the developer is typing. The achieved results show the superiority of the T5 model, despite the n-gram model being a competitive solution.","PeriodicalId":205629,"journal":{"name":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"289 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Empirical Study on Code Comment Completion\",\"authors\":\"A. Mastropaolo, Emad Aghajani, L. Pascarella, G. Bavota\",\"doi\":\"10.26226/morressier.613b5418842293c031b5b5da\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code comments play a prominent role in program comprehension activities. However, source code is not always documented and code and comments not always co-evolve. To deal with these issues, researchers have proposed techniques to automatically generate comments documenting a given code at hand. The most recent works in the area applied deep learning (DL) techniques to support such a task. Despite the achieved advances, the empirical evaluations of these approaches show that they are still far from a performance level that would make them valuable for developers. We tackle a simpler and related problem: Code comment completion. Instead of generating a comment for a given code from scratch, we investigate the extent to which state-of-the-art techniques can help developers in writing comments faster. We present a large-scale study in which we empirically assess how a simple n-gram model and the recently proposed Text-To-Text Transfer Transformer (T5) architecture can perform in autocompleting a code comment the developer is typing. The achieved results show the superiority of the T5 model, despite the n-gram model being a competitive solution.\",\"PeriodicalId\":205629,\"journal\":{\"name\":\"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"289 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26226/morressier.613b5418842293c031b5b5da\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26226/morressier.613b5418842293c031b5b5da","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Code comments play a prominent role in program comprehension activities. However, source code is not always documented and code and comments not always co-evolve. To deal with these issues, researchers have proposed techniques to automatically generate comments documenting a given code at hand. The most recent works in the area applied deep learning (DL) techniques to support such a task. Despite the achieved advances, the empirical evaluations of these approaches show that they are still far from a performance level that would make them valuable for developers. We tackle a simpler and related problem: Code comment completion. Instead of generating a comment for a given code from scratch, we investigate the extent to which state-of-the-art techniques can help developers in writing comments faster. We present a large-scale study in which we empirically assess how a simple n-gram model and the recently proposed Text-To-Text Transfer Transformer (T5) architecture can perform in autocompleting a code comment the developer is typing. The achieved results show the superiority of the T5 model, despite the n-gram model being a competitive solution.