缺失信息的人脸识别

Charlie K. Dagli, K. Brady, Daniel C. Halbert
{"title":"缺失信息的人脸识别","authors":"Charlie K. Dagli, K. Brady, Daniel C. Halbert","doi":"10.1109/THS.2011.6107915","DOIUrl":null,"url":null,"abstract":"Missing or degraded information continues to be a significant practical challenge facing automatic face representation and recognition. Generally, existing approaches seek either to generatively invert the degradation process or find discriminative representations that are immune to it. Ideally, the solution to this problem exists between these two perspectives. To this end, in this paper we show the efficacy of using probabilistic linear subspace models (in particular variational probabilistic PCA) for both modeling and recognizing facial data under disguise or occlusion. From a discriminative perspective, we verify the efficacy of this approach for attenuating the effect of missing data due to disguise and non-linear speculars in several verification experiments. From a generative view, we show its usefulness in not only estimating missing information, but also understanding facial covariates for image reconstruction. In addition, we present a least-squares connection to the maximum likelihood solution under missing data and show its intuitive connection to the geometry of the subspace learning problem.","PeriodicalId":228322,"journal":{"name":"2011 IEEE International Conference on Technologies for Homeland Security (HST)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Face recognition despite missing information\",\"authors\":\"Charlie K. Dagli, K. Brady, Daniel C. Halbert\",\"doi\":\"10.1109/THS.2011.6107915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing or degraded information continues to be a significant practical challenge facing automatic face representation and recognition. Generally, existing approaches seek either to generatively invert the degradation process or find discriminative representations that are immune to it. Ideally, the solution to this problem exists between these two perspectives. To this end, in this paper we show the efficacy of using probabilistic linear subspace models (in particular variational probabilistic PCA) for both modeling and recognizing facial data under disguise or occlusion. From a discriminative perspective, we verify the efficacy of this approach for attenuating the effect of missing data due to disguise and non-linear speculars in several verification experiments. From a generative view, we show its usefulness in not only estimating missing information, but also understanding facial covariates for image reconstruction. In addition, we present a least-squares connection to the maximum likelihood solution under missing data and show its intuitive connection to the geometry of the subspace learning problem.\",\"PeriodicalId\":228322,\"journal\":{\"name\":\"2011 IEEE International Conference on Technologies for Homeland Security (HST)\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Technologies for Homeland Security (HST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THS.2011.6107915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Technologies for Homeland Security (HST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THS.2011.6107915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

信息缺失或退化仍然是自动人脸表示和识别面临的重大实际挑战。一般来说,现有的方法要么寻求生成反转退化过程,要么寻求不受退化过程影响的歧视性表征。理想情况下,这个问题的解决方案存在于这两个透视图之间。为此,在本文中,我们展示了使用概率线性子空间模型(特别是变分概率PCA)对伪装或遮挡下的面部数据建模和识别的有效性。从判别的角度,我们在几个验证实验中验证了该方法对衰减由于伪装和非线性镜面导致的丢失数据的影响的有效性。从生成的角度来看,我们证明了它不仅在估计缺失信息方面有用,而且在理解图像重建的面部协变量方面有用。此外,我们给出了缺失数据下最大似然解的最小二乘连接,并显示了它与子空间学习问题几何的直观连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition despite missing information
Missing or degraded information continues to be a significant practical challenge facing automatic face representation and recognition. Generally, existing approaches seek either to generatively invert the degradation process or find discriminative representations that are immune to it. Ideally, the solution to this problem exists between these two perspectives. To this end, in this paper we show the efficacy of using probabilistic linear subspace models (in particular variational probabilistic PCA) for both modeling and recognizing facial data under disguise or occlusion. From a discriminative perspective, we verify the efficacy of this approach for attenuating the effect of missing data due to disguise and non-linear speculars in several verification experiments. From a generative view, we show its usefulness in not only estimating missing information, but also understanding facial covariates for image reconstruction. In addition, we present a least-squares connection to the maximum likelihood solution under missing data and show its intuitive connection to the geometry of the subspace learning problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信