{"title":"通过可穿戴式声学传感器监测和识别普遍的饮食习惯","authors":"Yin Bi, Wenyao Xu, Nan Guan, Yangjie Wei, W. Yi","doi":"10.4108/icst.pervasivehealth.2014.255423","DOIUrl":null,"url":null,"abstract":"Eating habits provide clinical diagnosis evidences of lifestyle related diseases, such as dysphagia and indigestion. However, it is costly to obtain eating habit information of common people in terms of both time and expenses. This paper presents a pervasive approach for eating habit monitoring and recognition by a necklace-like device and a smartphone communicating via bluetooth. The necklace-like device acquires acoustic signals from the throat, and the data are processed in the smartphone to recognize important features. With complex acoustic signals collected from the throat, our method comprehensively analyzes and recognizes different events including chewing, swallowing, and breathing in the smartphone. Experiments show that the proposed approach can recognize different acoustic events effectively, and the recognition accuracy with K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) is 86.82% and 98.35%, respectively. Finally, a real eating case study is conducted to validate the proposed approach.","PeriodicalId":120856,"journal":{"name":"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Pervasive eating habits monitoring and recognition through a wearable acoustic sensor\",\"authors\":\"Yin Bi, Wenyao Xu, Nan Guan, Yangjie Wei, W. Yi\",\"doi\":\"10.4108/icst.pervasivehealth.2014.255423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eating habits provide clinical diagnosis evidences of lifestyle related diseases, such as dysphagia and indigestion. However, it is costly to obtain eating habit information of common people in terms of both time and expenses. This paper presents a pervasive approach for eating habit monitoring and recognition by a necklace-like device and a smartphone communicating via bluetooth. The necklace-like device acquires acoustic signals from the throat, and the data are processed in the smartphone to recognize important features. With complex acoustic signals collected from the throat, our method comprehensively analyzes and recognizes different events including chewing, swallowing, and breathing in the smartphone. Experiments show that the proposed approach can recognize different acoustic events effectively, and the recognition accuracy with K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) is 86.82% and 98.35%, respectively. Finally, a real eating case study is conducted to validate the proposed approach.\",\"PeriodicalId\":120856,\"journal\":{\"name\":\"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/icst.pervasivehealth.2014.255423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/icst.pervasivehealth.2014.255423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pervasive eating habits monitoring and recognition through a wearable acoustic sensor
Eating habits provide clinical diagnosis evidences of lifestyle related diseases, such as dysphagia and indigestion. However, it is costly to obtain eating habit information of common people in terms of both time and expenses. This paper presents a pervasive approach for eating habit monitoring and recognition by a necklace-like device and a smartphone communicating via bluetooth. The necklace-like device acquires acoustic signals from the throat, and the data are processed in the smartphone to recognize important features. With complex acoustic signals collected from the throat, our method comprehensively analyzes and recognizes different events including chewing, swallowing, and breathing in the smartphone. Experiments show that the proposed approach can recognize different acoustic events effectively, and the recognition accuracy with K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) is 86.82% and 98.35%, respectively. Finally, a real eating case study is conducted to validate the proposed approach.