Xiaoqi Ren, G. Ananthanarayanan, A. Wierman, Minlan Yu
{"title":"Hopper:大规模的分散式投机感知集群调度","authors":"Xiaoqi Ren, G. Ananthanarayanan, A. Wierman, Minlan Yu","doi":"10.1145/2785956.2787481","DOIUrl":null,"url":null,"abstract":"As clusters continue to grow in size and complexity, providing scalable and predictable performance is an increasingly important challenge. A crucial roadblock to achieving predictable performance is stragglers, i.e., tasks that take significantly longer than expected to run. At this point, speculative execution has been widely adopted to mitigate the impact of stragglers. However, speculation mechanisms are designed and operated independently of job scheduling when, in fact, scheduling a speculative copy of a task has a direct impact on the resources available for other jobs. In this work, we present Hopper, a job scheduler that is speculation-aware, i.e., that integrates the tradeoffs associated with speculation into job scheduling decisions. We implement both centralized and decentralized prototypes of the Hopper scheduler and show that 50% (66%) improvements over state-of-the-art centralized (decentralized) schedulers and speculation strategies can be achieved through the coordination of scheduling and speculation.","PeriodicalId":268472,"journal":{"name":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale\",\"authors\":\"Xiaoqi Ren, G. Ananthanarayanan, A. Wierman, Minlan Yu\",\"doi\":\"10.1145/2785956.2787481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As clusters continue to grow in size and complexity, providing scalable and predictable performance is an increasingly important challenge. A crucial roadblock to achieving predictable performance is stragglers, i.e., tasks that take significantly longer than expected to run. At this point, speculative execution has been widely adopted to mitigate the impact of stragglers. However, speculation mechanisms are designed and operated independently of job scheduling when, in fact, scheduling a speculative copy of a task has a direct impact on the resources available for other jobs. In this work, we present Hopper, a job scheduler that is speculation-aware, i.e., that integrates the tradeoffs associated with speculation into job scheduling decisions. We implement both centralized and decentralized prototypes of the Hopper scheduler and show that 50% (66%) improvements over state-of-the-art centralized (decentralized) schedulers and speculation strategies can be achieved through the coordination of scheduling and speculation.\",\"PeriodicalId\":268472,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2785956.2787481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785956.2787481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale
As clusters continue to grow in size and complexity, providing scalable and predictable performance is an increasingly important challenge. A crucial roadblock to achieving predictable performance is stragglers, i.e., tasks that take significantly longer than expected to run. At this point, speculative execution has been widely adopted to mitigate the impact of stragglers. However, speculation mechanisms are designed and operated independently of job scheduling when, in fact, scheduling a speculative copy of a task has a direct impact on the resources available for other jobs. In this work, we present Hopper, a job scheduler that is speculation-aware, i.e., that integrates the tradeoffs associated with speculation into job scheduling decisions. We implement both centralized and decentralized prototypes of the Hopper scheduler and show that 50% (66%) improvements over state-of-the-art centralized (decentralized) schedulers and speculation strategies can be achieved through the coordination of scheduling and speculation.