基于基频检测的野外记录生物信号分割

N. García, E. Macias-Toro, J. Vargas-Bonilla, J. Daza, J. López
{"title":"基于基频检测的野外记录生物信号分割","authors":"N. García, E. Macias-Toro, J. Vargas-Bonilla, J. Daza, J. López","doi":"10.1109/IWOBI.2014.6913944","DOIUrl":null,"url":null,"abstract":"Monitoring animal species by means of the automatic sound recognition is nowadays a research field of high interest. One of the challenges of this area lies in the segmentation of the species vocalizations. Recordings acquired in natural habitats are contaminated with the sounds emitted by other species and different kinds of background noise. If the data is “clean” a robust segmentation is feasible, otherwise a pre-processing stage must be carefully performed in order to recover relevant information over the noise effect. In this manuscript, we propose the use of the Karnuhen-Loeve Transform noise reduction algorithm as an additional pre-processing sub-stage. We also propose a segmentation method based on the Fundamental Frequency detection and Voiced/Unvoiced segmentation, implemented with the Voice Analysis software Praat. Preliminary results show that the proposed pre-processing scheme improves the segmentation process, with results comparable to the commercial software Song Scope.","PeriodicalId":433659,"journal":{"name":"3rd IEEE International Work-Conference on Bioinspired Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Segmentation of bio-signals in field recordings using fundamental frequency detection\",\"authors\":\"N. García, E. Macias-Toro, J. Vargas-Bonilla, J. Daza, J. López\",\"doi\":\"10.1109/IWOBI.2014.6913944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring animal species by means of the automatic sound recognition is nowadays a research field of high interest. One of the challenges of this area lies in the segmentation of the species vocalizations. Recordings acquired in natural habitats are contaminated with the sounds emitted by other species and different kinds of background noise. If the data is “clean” a robust segmentation is feasible, otherwise a pre-processing stage must be carefully performed in order to recover relevant information over the noise effect. In this manuscript, we propose the use of the Karnuhen-Loeve Transform noise reduction algorithm as an additional pre-processing sub-stage. We also propose a segmentation method based on the Fundamental Frequency detection and Voiced/Unvoiced segmentation, implemented with the Voice Analysis software Praat. Preliminary results show that the proposed pre-processing scheme improves the segmentation process, with results comparable to the commercial software Song Scope.\",\"PeriodicalId\":433659,\"journal\":{\"name\":\"3rd IEEE International Work-Conference on Bioinspired Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd IEEE International Work-Conference on Bioinspired Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2014.6913944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd IEEE International Work-Conference on Bioinspired Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2014.6913944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用声音自动识别技术对动物物种进行监测是目前一个备受关注的研究领域。这一领域的挑战之一在于物种发声的分割。在自然栖息地获得的录音会受到其他物种发出的声音和不同种类的背景噪音的污染。如果数据是“干净的”,稳健的分割是可行的,否则必须仔细执行预处理阶段,以便在噪声影响下恢复相关信息。在本文中,我们建议使用karnuhenloeve变换降噪算法作为额外的预处理子阶段。我们还提出了一种基于基频检测和浊音/浊音分割的分割方法,并利用语音分析软件Praat实现。初步结果表明,所提出的预处理方案改善了分割过程,其结果可与商用软件Song Scope相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of bio-signals in field recordings using fundamental frequency detection
Monitoring animal species by means of the automatic sound recognition is nowadays a research field of high interest. One of the challenges of this area lies in the segmentation of the species vocalizations. Recordings acquired in natural habitats are contaminated with the sounds emitted by other species and different kinds of background noise. If the data is “clean” a robust segmentation is feasible, otherwise a pre-processing stage must be carefully performed in order to recover relevant information over the noise effect. In this manuscript, we propose the use of the Karnuhen-Loeve Transform noise reduction algorithm as an additional pre-processing sub-stage. We also propose a segmentation method based on the Fundamental Frequency detection and Voiced/Unvoiced segmentation, implemented with the Voice Analysis software Praat. Preliminary results show that the proposed pre-processing scheme improves the segmentation process, with results comparable to the commercial software Song Scope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信