基于多神经网络的机器打印字符识别自动规则生成

J. Wang, J. Jean
{"title":"基于多神经网络的机器打印字符识别自动规则生成","authors":"J. Wang, J. Jean","doi":"10.1109/ICSYSE.1991.161148","DOIUrl":null,"url":null,"abstract":"A set of neural networks is used in a two-stage character recognition system to resolve the confusion among similar characters. A snowball training algorithm is proposed to remedy the convergence problem encountered by backpropagation training. The algorithm is shown to be effective in reducing the number of hidden units and the training time. To further improve the network's generalization capability, a smoothing operation is incorporated into the snowball training. Experimental results confirm the effectiveness of the approach.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic rule generation for machine printed character recognition using multiple neural networks\",\"authors\":\"J. Wang, J. Jean\",\"doi\":\"10.1109/ICSYSE.1991.161148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of neural networks is used in a two-stage character recognition system to resolve the confusion among similar characters. A snowball training algorithm is proposed to remedy the convergence problem encountered by backpropagation training. The algorithm is shown to be effective in reducing the number of hidden units and the training time. To further improve the network's generalization capability, a smoothing operation is incorporated into the snowball training. Experimental results confirm the effectiveness of the approach.<<ETX>>\",\"PeriodicalId\":250037,\"journal\":{\"name\":\"IEEE 1991 International Conference on Systems Engineering\",\"volume\":\"283 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1991 International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1991.161148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在两阶段字符识别系统中采用一组神经网络来解决相似字符之间的混淆问题。为了解决反向传播训练的收敛性问题,提出了一种滚雪球训练算法。该算法在减少隐藏单元的数量和训练时间方面是有效的。为了进一步提高网络的泛化能力,在雪球训练中加入了平滑运算。实验结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic rule generation for machine printed character recognition using multiple neural networks
A set of neural networks is used in a two-stage character recognition system to resolve the confusion among similar characters. A snowball training algorithm is proposed to remedy the convergence problem encountered by backpropagation training. The algorithm is shown to be effective in reducing the number of hidden units and the training time. To further improve the network's generalization capability, a smoothing operation is incorporated into the snowball training. Experimental results confirm the effectiveness of the approach.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信